بهینهسازی شرایط ازوندهی آب باهدف حذف هورمونهای استرون و 17 بتا-استرادیول
الموضوعات :
خداویردی عباسزاده معروفان
1
,
حمید میرزایی
2
,
امیرعباس متین
3
,
افشین جوادی
4
,
علیرضا امانی قدیم
5
1 - دانشآموخته دکترای بهداشت مواد غذایی، دانشکده دامپزشکی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 - دانشیار گروه بهداشت مواد غذایی، دانشکده دامپزشکی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
3 - دانشیار گروه شیمی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
4 - دانشیار گروه بهداشت مواد غذایی، دانشکده دامپزشکی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
5 - دانشیار گروه شیمی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
تاريخ الإرسال : 14 الأربعاء , محرم, 1442
تاريخ التأكيد : 14 السبت , ربيع الأول, 1442
تاريخ الإصدار : 05 الثلاثاء , صفر, 1442
الکلمات المفتاحية:
آب,
استرون,
17بتا- استرادیول,
ازوندهی,
ملخص المقالة :
حضور مواد شیمیایی مختلکننده غدد درونریز در محیطزیست و اثرات نامطلوب آنها بر سلامت انسان و حیوانات توجه زیادی را در سالهای اخیر به خود جلب کرده است. استروژنها مهمترین مختلکنندههای غدد درونریز بدن بوده و استرون (E1) و 17بتا- استرادیول (E2) قویترین آنها میباشند. هدف از این تحقیق بهینهسازی شرایط حذف هورمونهای E1 و E2 در آب با استفاده از ازوندهی است. برای ارزیابی مقدار E1و E2از روش کرواتوگرافی مایع با کارایی بالا استفاده شد و برای ارزیابی میزان تأثیر ازوندهی در حذف هورمونهای مورد مطالعه، ابتدا شرایط بهینه ازوندهی ازنظر غلظت گاز ازون، مدتزمان ازوندهی، pH و غلظت هورمونهای E1و E2محاسبه شد. طبق نتایج بهدستآمده غلظت ازون برابر ۴ میلیگرم در لیتر، مدتزمان ۵ دقیقه، pH برابر ۶ و غلظت اولیه محلول هورمونهای E1و E2تا ۱۰ میلیگرم در لیتر بیشترین تأثیر را داشت. درنهایت ازوندهی با شرایط بهینه باعث حذف ۹۰ درصد E1و 95 درصد E2شد. درمجموع نتایج این تحقیق نشان داد که ازوندهی در شرایط بهینه روش مناسبی برای حذف این هورمونها از آب میباشد.
المصادر:
· Abbaszadeh Maroufan, KH., Mirzaei, H., Abbas Matin, A., Javadi, A., Amani-gadim, A. (2019). Environmental Monitoring of 17β- estradiol and Estrone in Ardabil’s Drinking Water Source as Endocrine Disrupting Chemicals.Journal of Archives of Pharmacy Practice. 10(3): 98-106.
· Baldigo, B P., George, S D., Phillips, P J., Hemming, J D., Denslow, N D and Kroll, KJ. (2015). Potential estrogenic effects of wastewaters on gene expression in Pimephales promelas and fish assemblages in streams of southeastern New York. Environmental Toxicology and Chemistry, 34 (12): 2803-2815.
· Belfroid AC., Schrap SM and de Voogt P. (2006). Occurrence of estrogenic hormones, bisphenol-A and phthalates in the aquatic environment of The Netherlands, In: Vethaak AD (Ed.) Estrogens and xenoestrogens in the aquatic environment: an integrated approach for field monitoring and effect assessment. pensacola FL: SETAC Press.31(2): 53-75.
· Bila, D., Montalvao Antonio, F., Azevedo Debora de, A and Dezotti, M. (2007). Estrogenic activity removal of 17β-estradiol by ozonation and identification of by- products. Chemosphere, 69: 736-746.
· Caldwell DJ., Mastrocco F., Nowak E., Johnston J., Yekel H., Pfeiffer D and et al. (2009). An assessment of potential exposure and risk from estrogens in drinking water. Environ Health Perspect, 118: 338-44.
· Chang, H., Wan, Y and Hu, J. (2009). Determination and source apportionment of five classes of steroid hormones in urban rivers. Environmental Science & Technology, 43(20): 7691-7698.
· Ciocan, CM., Cubero-Leon, E., Puinean, AM., Hill, E M., Minier, C., Osada, M and Rotchell, JM. (2010). Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis. Environmental Pollution, 158 (9): 2977-2984
· Dai, S., and Seol, Y. (2014). Water permeability in hydrate‐bearing sediments: A pore‐scale study. Geophysical Research Letters., 41, 4176– 4184.
· Doshi, T., Mehta, S S., Dighe, V., Balasinor, N and Vanage, G. (2011). Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology, 289 (2): 74-82.
· Ghaneian, MT., Peirovi, R and Ebrahimi, AA . (2017). A review on the importance of hormones monitoring and their removal in conventional wastewater treatment systems. Journal of Environmental Health and Sustainable Development, 2 (2). pp. 310-318.
· Hamid, H and Eskicioglu, C. (2012). Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Research, 46(18): 5813-5833.
· Hassani, G., Babaei, A.A., Takdastan, A., shirmardi, M., Yousefian, F., Mohammadi, M.J. (2016). Occurrence and fate of 17β-estradiol in water resources and weste water in Ahvaz, Iran. Global NEST journal, 18 (4): 855-866.
· Hemmati Moghaddam, A., Asefi N and Hanifian, SH. (2017). Study of the effect of treatment on the qualitative and microbial characteristics of sumac, cumin, and pepper. Journal of Food Hygiene, 27: 37-47. [In Persian].
· Hintemann T., Schneider C., Schöler HF and Schneider RJ. (2006). Field study using two immunoassays for the determination of estradiol and ethinylestradiol in the aquatic environment. Water Research, 40: 2287-2294.
· Li, X., Guo, F., Li, H., Li, G. (2015). Nonthermally dominated electron acceleration during magnetic reconnection in a low plasma. The Astrophysical Journal Letters. 2: 24-30.
· Lin, Y., Peng, Z and Zang, X. (2009). Ozonation of estrone, estradiol, diethylstilbestrol in waters. Desalination, 30: 235-240.
· Liu S., Ying G G., Zhao J L., Chen F., Yang B., Zhou LJ and Lai HJ. (2011). Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1218: 1367-1378.
· Lopez de Alda MJ., Gil A., Paz E and Barcelo D. (2002). Occurrence and analysis of estrogens and progestogens in river sediments by liquid chromatography-electrospraymass spectrometry. Analyst, 127: 1299-1304.
· Pojana G., Gomiero A., Jonkers N and Marcomini A. (2009). Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International, 33: 929-936.
· Ra JS., Lee SH., Lee J., Kim HY., Lim., Kim SH and Kim SD. (2011). Occurrence of estrogenic chemicals in South Korean surface waters and municipal wastewaters. Journal of Environmental Monitoring, 13: 101-109.
· Rujiralai, Th., Bull, I., Llewellyn, N and Evershed, R. (2011). In situ polar organic chemical integrative sampling (POCIS) of steroidal estrogens in sewage treatment works discharge and river water. Journal of Environmental Monitoring. 13: 1427-1434.
· Runnalls, TJ., Beresford, N., Losty, E., Scott, A P and Sumpter, J P. (2013). Several synthetic progestins with different potencies adversely affect reproduction of fish. Environ. Environmental Science & Technology, 47 (4): 2077-2084.
· Sakulthaew, C., Chokejaroenrat, C., Satapanajaru, T and et al. (2020). Removal of 17β-estradiol using persulfate synergistically activated using heat and ultraviolet light. Water, Air & Soil Pollution. 231, 247.
· Sun, Q., Zhu, G., Wang, C. et al. (2019). Removal characteristics of steroid estrogen in the mixed system through an ozone-based advanced oxidation process. Water, Air & Soil Pollution. 218-230.
· Taghizadeh, M., Mohebzadeh, T., Takdastan, A and Dehghani, M. (2013). Comparing the performance of wastewater treatment using activated sludge and aerated lagoons processes in the removal efficiency of estradiol hormones. Jundishapur Journal of Health Sciences, 5(3): 149-156.
· Takdastan, A., Nazarzadeh, A., Oroogi, N and Javanmardi, P. (2016). Performance of Municipal and Hospital Wastewater Treatment Plants in Removal of Estrogenic Compounds. Mazandaran University Medical Science journal, 26(139): 103-110. [In Persian].
· Tubbs, C W. (2016). California condors and DDT: examining the effects of endocrine disrupting chemicals in a critically endangered species. Endocrine Disruptors. 4(1): 117-125.
· Vandenberg, LN., Colborn, T., Hayes, T B., Heindel, J J., Jacobs, J., Lee, D H and et al. (2012). Hormones and endocrine-disrupting chemicals: lowdose effects and nonmonotonic dose responses. Endocrine reviews. 33 (3): 378-455
· Wang, H., Zhan, J., Yao, W., Wang, B., Deng, S., Huang, J. Yu, G and Wang, Y. (2018). Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone ( and an electro-peroxone process. Water Research. 130: 127-138.
· Zarghi, MH., Roudbari, A., Jorfi, S and Jaafarzadeh, N. (2019). Removal of estrogen hormones (17β-estradiol and estrone) from aqueous solutions using rice husk silica. Chemical and biochemical engineering quarterly. 31;33(2):281-93.
· Zhuang, Y., zhang, T and Ping, G. (2008). Stacking and simultaneous determination of estrogens in water samples by CE with electrochemical detection. Journal of Separation Science, 55: 994-1000.
_||_
· Abbaszadeh Maroufan, KH., Mirzaei, H., Abbas Matin, A., Javadi, A., Amani-gadim, A. (2019). Environmental Monitoring of 17β- estradiol and Estrone in Ardabil’s Drinking Water Source as Endocrine Disrupting Chemicals.Journal of Archives of Pharmacy Practice. 10(3): 98-106.
· Baldigo, B P., George, S D., Phillips, P J., Hemming, J D., Denslow, N D and Kroll, KJ. (2015). Potential estrogenic effects of wastewaters on gene expression in Pimephales promelas and fish assemblages in streams of southeastern New York. Environmental Toxicology and Chemistry, 34 (12): 2803-2815.
· Belfroid AC., Schrap SM and de Voogt P. (2006). Occurrence of estrogenic hormones, bisphenol-A and phthalates in the aquatic environment of The Netherlands, In: Vethaak AD (Ed.) Estrogens and xenoestrogens in the aquatic environment: an integrated approach for field monitoring and effect assessment. pensacola FL: SETAC Press.31(2): 53-75.
· Bila, D., Montalvao Antonio, F., Azevedo Debora de, A and Dezotti, M. (2007). Estrogenic activity removal of 17β-estradiol by ozonation and identification of by- products. Chemosphere, 69: 736-746.
· Caldwell DJ., Mastrocco F., Nowak E., Johnston J., Yekel H., Pfeiffer D and et al. (2009). An assessment of potential exposure and risk from estrogens in drinking water. Environ Health Perspect, 118: 338-44.
· Chang, H., Wan, Y and Hu, J. (2009). Determination and source apportionment of five classes of steroid hormones in urban rivers. Environmental Science & Technology, 43(20): 7691-7698.
· Ciocan, CM., Cubero-Leon, E., Puinean, AM., Hill, E M., Minier, C., Osada, M and Rotchell, JM. (2010). Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis. Environmental Pollution, 158 (9): 2977-2984
· Dai, S., and Seol, Y. (2014). Water permeability in hydrate‐bearing sediments: A pore‐scale study. Geophysical Research Letters., 41, 4176– 4184.
· Doshi, T., Mehta, S S., Dighe, V., Balasinor, N and Vanage, G. (2011). Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology, 289 (2): 74-82.
· Ghaneian, MT., Peirovi, R and Ebrahimi, AA . (2017). A review on the importance of hormones monitoring and their removal in conventional wastewater treatment systems. Journal of Environmental Health and Sustainable Development, 2 (2). pp. 310-318.
· Hamid, H and Eskicioglu, C. (2012). Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Research, 46(18): 5813-5833.
· Hassani, G., Babaei, A.A., Takdastan, A., shirmardi, M., Yousefian, F., Mohammadi, M.J. (2016). Occurrence and fate of 17β-estradiol in water resources and weste water in Ahvaz, Iran. Global NEST journal, 18 (4): 855-866.
· Hemmati Moghaddam, A., Asefi N and Hanifian, SH. (2017). Study of the effect of treatment on the qualitative and microbial characteristics of sumac, cumin, and pepper. Journal of Food Hygiene, 27: 37-47. [In Persian].
· Hintemann T., Schneider C., Schöler HF and Schneider RJ. (2006). Field study using two immunoassays for the determination of estradiol and ethinylestradiol in the aquatic environment. Water Research, 40: 2287-2294.
· Li, X., Guo, F., Li, H., Li, G. (2015). Nonthermally dominated electron acceleration during magnetic reconnection in a low plasma. The Astrophysical Journal Letters. 2: 24-30.
· Lin, Y., Peng, Z and Zang, X. (2009). Ozonation of estrone, estradiol, diethylstilbestrol in waters. Desalination, 30: 235-240.
· Liu S., Ying G G., Zhao J L., Chen F., Yang B., Zhou LJ and Lai HJ. (2011). Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1218: 1367-1378.
· Lopez de Alda MJ., Gil A., Paz E and Barcelo D. (2002). Occurrence and analysis of estrogens and progestogens in river sediments by liquid chromatography-electrospraymass spectrometry. Analyst, 127: 1299-1304.
· Pojana G., Gomiero A., Jonkers N and Marcomini A. (2009). Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International, 33: 929-936.
· Ra JS., Lee SH., Lee J., Kim HY., Lim., Kim SH and Kim SD. (2011). Occurrence of estrogenic chemicals in South Korean surface waters and municipal wastewaters. Journal of Environmental Monitoring, 13: 101-109.
· Rujiralai, Th., Bull, I., Llewellyn, N and Evershed, R. (2011). In situ polar organic chemical integrative sampling (POCIS) of steroidal estrogens in sewage treatment works discharge and river water. Journal of Environmental Monitoring. 13: 1427-1434.
· Runnalls, TJ., Beresford, N., Losty, E., Scott, A P and Sumpter, J P. (2013). Several synthetic progestins with different potencies adversely affect reproduction of fish. Environ. Environmental Science & Technology, 47 (4): 2077-2084.
· Sakulthaew, C., Chokejaroenrat, C., Satapanajaru, T and et al. (2020). Removal of 17β-estradiol using persulfate synergistically activated using heat and ultraviolet light. Water, Air & Soil Pollution. 231, 247.
· Sun, Q., Zhu, G., Wang, C. et al. (2019). Removal characteristics of steroid estrogen in the mixed system through an ozone-based advanced oxidation process. Water, Air & Soil Pollution. 218-230.
· Taghizadeh, M., Mohebzadeh, T., Takdastan, A and Dehghani, M. (2013). Comparing the performance of wastewater treatment using activated sludge and aerated lagoons processes in the removal efficiency of estradiol hormones. Jundishapur Journal of Health Sciences, 5(3): 149-156.
· Takdastan, A., Nazarzadeh, A., Oroogi, N and Javanmardi, P. (2016). Performance of Municipal and Hospital Wastewater Treatment Plants in Removal of Estrogenic Compounds. Mazandaran University Medical Science journal, 26(139): 103-110. [In Persian].
· Tubbs, C W. (2016). California condors and DDT: examining the effects of endocrine disrupting chemicals in a critically endangered species. Endocrine Disruptors. 4(1): 117-125.
· Vandenberg, LN., Colborn, T., Hayes, T B., Heindel, J J., Jacobs, J., Lee, D H and et al. (2012). Hormones and endocrine-disrupting chemicals: lowdose effects and nonmonotonic dose responses. Endocrine reviews. 33 (3): 378-455
· Wang, H., Zhan, J., Yao, W., Wang, B., Deng, S., Huang, J. Yu, G and Wang, Y. (2018). Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone ( and an electro-peroxone process. Water Research. 130: 127-138.
· Zarghi, MH., Roudbari, A., Jorfi, S and Jaafarzadeh, N. (2019). Removal of estrogen hormones (17β-estradiol and estrone) from aqueous solutions using rice husk silica. Chemical and biochemical engineering quarterly. 31;33(2):281-93.
· Zhuang, Y., zhang, T and Ping, G. (2008). Stacking and simultaneous determination of estrogens in water samples by CE with electrochemical detection. Journal of Separation Science, 55: 994-1000.