بررسی اثر ضد قارچی باکتری های مولد اسید لاکتیک جدا شده از کره مسکه، دوغ شتر و ماست محلی بر روی آسپرژیلوس فلاوس و آسپرژیلوس نایجر
الموضوعات :
احمد نصرالله زاده
1
,
مرتضی خمیری
2
,
علیرضا صادقی
3
,
ماندانا محمودی
4
,
مریم ابراهیمی
5
1 - دانشآموخته کارشناسی ارشد میکروبیولوژی مواد غذایی، دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 - دانشیار گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 - دانشیار گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
4 - دانشآموخته دکتری علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
5 - دانشآموخته دکتری علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
تاريخ الإرسال : 28 الأحد , صفر, 1441
تاريخ التأكيد : 27 الأربعاء , جمادى الأولى, 1441
تاريخ الإصدار : 26 الثلاثاء , جمادى الأولى, 1441
الکلمات المفتاحية:
بازدارندگی,
آسپرژیلوس نایجر,
ضدقارچی,
لاکتیک اسید باکتریها,
آسپرژیلوس فلاوس,
ملخص المقالة :
در فرآورده های غذایی و دامی از انواع مختلف نگهدارندههای شیمیایی و آنتی بیوتیک ها بهمنظور مهار رشد آسپرژیلوس فلاوس و دیگر قارچهای توکسین زا استفاده می شود. هدف از این تحقیق بررسی اثر ضدقارچی لاکتیک اسید باکتری های جدا شده از کره مسکه، دوغ شتر و ماست محلی علیه کپک های توکسین زای آسپرژیلوس فلاوس و آسپرژیلوس نایجر بود. برای این منظور از بین جدایه هایی که قبلاً اثرات ضدباکتریایی آنها مورد بررسی قرار گرفته بودند، جدایه های لاکتوباسیلوس پلانتاروم B38، انتروکوکوس فاسیوم C8 و لاکتوباسیلوس رامنوسوس Y89 با بیشترین اثر بازدارندگی بر باکتری های بیماریزا، انتخاب و تأثیر ضدقارچی آنها در برابر کپک های توکسین زا با استفاده از روش دولایه مورد بررسی قرار گرفت. نتایج نشان داد که جدایه های لاکتیکی در پایان روز چهارم از رشد آسپرژیلوس نایجر جلوگیری نمودند و انتروکوکوس فاسیوم، لاکتوباسیلوس رامنوسوس و لاکتوباسیلوس پلانتاروم بهترتیب 84/70، 65/37 و 31/43 درصد مهارکنندگی از خود نشان دادند. همچنین لاکتوباسیلوس رامنوسوس با 35/62 درصد بازدارندگیبه شکل معنی داری(p < 0.05) از بالاترین میزان بازدارندگی بر روی آسپرژیلوس نایجر برخوردار بود. نتایج بررسی تأثیر جدایه های لاکتیکی بر میزان رشد آسپرژیلوس فلاوس نیز نشان داد که تمام باکتری های مورد آزمون بر روی کپک مذکور دارای خاصیت بازدارندگی بودند و لاکتوباسیلوس رامنوسوس با 83/79 درصد مهار به شکل معنی داری(p < 0.05) از بالاترین میزان بازدارندگی بر روی آسپرژیلوس فلاوس برخوردار بود. بنابراین با توجه به توانایی مهارکنندگی این جدایه ها پیشنهاد می شود که از آنها بهعنوان نگهدارنده زیستی و بههمراه نگهدارندههای سنتزی در صنعت غذا استفاده گردد.
المصادر:
· Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N.P. and Ayyash, M. (2017). Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT - Food Science and Technology, 79: 316–325.
· Ahmadova, A., Todorov, S.D., Hadji-Sfaxi, I., Choiset, Y., Rabesona, H., Messaoudi, S., et al. (2013). Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe, 20: 42–49.
· Arora, D.K., Das, S. and Sukumar, M. (2013). Analyzing Microbes: Manual of Molecular Biology Techniques. Springer Berlin Heidelberg, pp. 135–152.
· Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods, a review. International Journal of Food Microbiology, 94: 223–253.
· Cortés-Zavaleta, O., López-Malo, A., Hernández-Mendoza, A., and García, H. (2014). Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. International Journal of Food Microbiology, 173: 30–35.
· Dali, D. K. D., Deschamps, A. M. and Richard-Forget, F. (2010). Lactic acid bacteria e potential for control of mould growth and mycotoxins: a review. Food Control, 21: 370–380.
· Delavenne, E., Ismail, R., Pawtowski, A., Mounier, J., Barbier, G. and Le Blay G. (2012). Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control, 30: 206–213.
· Filtenborg, O., Frisvad, J.C. and Thrane, U. (1996). Moulds in food spoilage. International Journal of Food Microbiology, 33(1): 85–102.
· Gaggia, F., Di Gioia, D., Baffoni, L. and Biavati, B. (2011). The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends in Food Science and Technology, 22: 58–66.
· Gerbaldo, G.A., Barberis, C., Pascual, L., Dalcero, A. and Barberis, L. (2012). Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiology Letters, 332: 27–33.
· Gerez, C., Torres, M., deValdez, G.F. and Rollán, G. (2013). Control of spoilage fungi by lactic acid bacteria. Biological Control, 64(3): 231–237.
· Guimarães, A., Venancio, A., and Abrunhosa, L. (2018). Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Additives and Contaminants: Part A, 35(9): 1803–1818.
· Jung, S., Hwang, H., and Lee, J.H. (2019). Effect of lactic acid bacteria on phenyllactic acid production in kimchi. Food Control, 106, 106701.
· Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A. and Gobbetti, M. (2000). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied Microbiology, 66: 4084–4090.
· Lavermicocca, P., Valerio, F. and Visconti, A. (2003). Antifungal activity of phenyllactic acid against molds isolated from bakery products. Applied and Environmental Microbiology, 69: 634–640.
· Leite, A.M.O., Miguel, M.A.L., Peixoto, R.S., Ruas-Madiedo, P., Paschoalin, V.M. F., Mayo, B. and Delgado, S. (2015). Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. Journal of Dairy Science, 98: 1–11.
· Leroy, F. and De Vuyst L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 15(2): 67–78.
· Li, H., Zhang, S., Lu, J., Liu, L., Uluko, H., Pang, X. et al. (2014). Antifungal activities and effect of Lactobacillus casei AST18 on the mycelia morphology and ultrastructure of Penicillium chrysogenum. Food Control, 43: 57–64.
· Lotfi, H., Hejazi, M. A., Maleki Zanjani, B. and Barzegari A. (2010). Isolation, biochemical and molecular identification of potentiallly probiotic bacteria from traditional dairy products from Heris and Sarab Regions. Journal of Food Research, 1: 1–17. (In Persian)
· Leyva Salas, M., Thierry, A., Lemaître, M., Garric, G., Harel-Oger, M., Chatel, M. and Coton, E. (2018). Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Frontiers in Microbiology, 9, 1787.
· Lynch, K.M., Pawlowska, A.M., Brosnan, B., Coffey, A., Zannini, E., Furey, A. et al. (2014). Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. International Dairy Journal, 34(1): 167–173.
· Magnusson, J. and Schnürer, J. (2001). Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology, 67: 1–5.
· Magnusson, J., Ström, K., Roos, S., Sjögren, J. and Schnürer, J. (2003). Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters, 219(1): 129–135.
· Nanda, D.K., Tomar, S.K., Singh, R., Mal, G., Singh, P., Arora, D.K. and Kumar, D. (2011). Phenotypic and genotypic characterisation of Lactobacilli isolated from camel cheese produced in India. International Journal of Dairy Technology, 64(3): 437–443.
· Nasrollahzadeh, A., Khomeiri, M., Sadeghi, A, Mahmudi, M. and Ebrahimi M. (2019). Identification and evaluation of the antimicrobial potential of strains derived from traditional fermented dairy products of Iran as a biological preservative against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli. Pathogens, 8(2): 71–91.
· Oliveira, P.M., Zannini, E. and Arendt, E.K. (2014). Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiology, 37: 78–95.
· Parkin, D.M., Bray, F., Ferlay, J. and Pisani, P. (2005). Global cancer statistics, 2002. CA: A Cancer Journal for Clinicians Cancer, 55: 74–108.
· Pawlowska, A.M., Zannini, E., Coffey, A. and Arendt, E.K. (2012). “Green Preservatives”: combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Advances in Food and Nutrition Research, 66: 66: 217–238.
· Rossetti, L. and Giraffa, G. (2005). Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. Journal of Microbiological Methods, 63(2): 135-144.
· Rouse, S., Harnett, D., Vaughan, A. and Sinderen D. (2008). Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Journal of Applied Microbiology, 104(3): 915–923.
· Schnürer, J. and Magnusson, J. (2005). Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science and Technology, 16(1): 70–78.
· Sengun, I., Yaman, D. and Gonul, S. (2008). Mycotoxins and mould contamination in cheese: a review. World Mycotoxin Journal, 1(3): 291–298.
· Siedler, S., Balti, R. and Neves, A.R. (2019). Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Current Opinion in Biotechnology, 56: 138-146.
· Stroem, K., Schnuerer, J. and Melin P. (2005). Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiology Letters, 246: 119–124.
· Tropcheva, R., Nikolova, D., Evstatieva, Y. and Danova, S. 2014. Antifungal activity and identification of Lactobacilli, isolated from traditional dairy product “katak”. Anaerobe, 28: 78-84.
· Yang, E. and Chang, H. (2010). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology, 139(1): 56–63.
· Zhang, J., Wang, X. J., Yan, Y.J., Jiang, L., Wang, J.D., Li B.J. et al. (2010). Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from Actinoplanes sp. HBDN08 with antifungal activity. Bioresource Technology, 101(21): 8383–8388.
_||_
· Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N.P. and Ayyash, M. (2017). Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT - Food Science and Technology, 79: 316–325.
· Ahmadova, A., Todorov, S.D., Hadji-Sfaxi, I., Choiset, Y., Rabesona, H., Messaoudi, S., et al. (2013). Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe, 20: 42–49.
· Arora, D.K., Das, S. and Sukumar, M. (2013). Analyzing Microbes: Manual of Molecular Biology Techniques. Springer Berlin Heidelberg, pp. 135–152.
· Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods, a review. International Journal of Food Microbiology, 94: 223–253.
· Cortés-Zavaleta, O., López-Malo, A., Hernández-Mendoza, A., and García, H. (2014). Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. International Journal of Food Microbiology, 173: 30–35.
· Dali, D. K. D., Deschamps, A. M. and Richard-Forget, F. (2010). Lactic acid bacteria e potential for control of mould growth and mycotoxins: a review. Food Control, 21: 370–380.
· Delavenne, E., Ismail, R., Pawtowski, A., Mounier, J., Barbier, G. and Le Blay G. (2012). Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control, 30: 206–213.
· Filtenborg, O., Frisvad, J.C. and Thrane, U. (1996). Moulds in food spoilage. International Journal of Food Microbiology, 33(1): 85–102.
· Gaggia, F., Di Gioia, D., Baffoni, L. and Biavati, B. (2011). The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends in Food Science and Technology, 22: 58–66.
· Gerbaldo, G.A., Barberis, C., Pascual, L., Dalcero, A. and Barberis, L. (2012). Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiology Letters, 332: 27–33.
· Gerez, C., Torres, M., deValdez, G.F. and Rollán, G. (2013). Control of spoilage fungi by lactic acid bacteria. Biological Control, 64(3): 231–237.
· Guimarães, A., Venancio, A., and Abrunhosa, L. (2018). Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Additives and Contaminants: Part A, 35(9): 1803–1818.
· Jung, S., Hwang, H., and Lee, J.H. (2019). Effect of lactic acid bacteria on phenyllactic acid production in kimchi. Food Control, 106, 106701.
· Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A. and Gobbetti, M. (2000). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied Microbiology, 66: 4084–4090.
· Lavermicocca, P., Valerio, F. and Visconti, A. (2003). Antifungal activity of phenyllactic acid against molds isolated from bakery products. Applied and Environmental Microbiology, 69: 634–640.
· Leite, A.M.O., Miguel, M.A.L., Peixoto, R.S., Ruas-Madiedo, P., Paschoalin, V.M. F., Mayo, B. and Delgado, S. (2015). Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. Journal of Dairy Science, 98: 1–11.
· Leroy, F. and De Vuyst L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 15(2): 67–78.
· Li, H., Zhang, S., Lu, J., Liu, L., Uluko, H., Pang, X. et al. (2014). Antifungal activities and effect of Lactobacillus casei AST18 on the mycelia morphology and ultrastructure of Penicillium chrysogenum. Food Control, 43: 57–64.
· Lotfi, H., Hejazi, M. A., Maleki Zanjani, B. and Barzegari A. (2010). Isolation, biochemical and molecular identification of potentiallly probiotic bacteria from traditional dairy products from Heris and Sarab Regions. Journal of Food Research, 1: 1–17. (In Persian)
· Leyva Salas, M., Thierry, A., Lemaître, M., Garric, G., Harel-Oger, M., Chatel, M. and Coton, E. (2018). Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Frontiers in Microbiology, 9, 1787.
· Lynch, K.M., Pawlowska, A.M., Brosnan, B., Coffey, A., Zannini, E., Furey, A. et al. (2014). Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. International Dairy Journal, 34(1): 167–173.
· Magnusson, J. and Schnürer, J. (2001). Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology, 67: 1–5.
· Magnusson, J., Ström, K., Roos, S., Sjögren, J. and Schnürer, J. (2003). Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters, 219(1): 129–135.
· Nanda, D.K., Tomar, S.K., Singh, R., Mal, G., Singh, P., Arora, D.K. and Kumar, D. (2011). Phenotypic and genotypic characterisation of Lactobacilli isolated from camel cheese produced in India. International Journal of Dairy Technology, 64(3): 437–443.
· Nasrollahzadeh, A., Khomeiri, M., Sadeghi, A, Mahmudi, M. and Ebrahimi M. (2019). Identification and evaluation of the antimicrobial potential of strains derived from traditional fermented dairy products of Iran as a biological preservative against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli. Pathogens, 8(2): 71–91.
· Oliveira, P.M., Zannini, E. and Arendt, E.K. (2014). Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiology, 37: 78–95.
· Parkin, D.M., Bray, F., Ferlay, J. and Pisani, P. (2005). Global cancer statistics, 2002. CA: A Cancer Journal for Clinicians Cancer, 55: 74–108.
· Pawlowska, A.M., Zannini, E., Coffey, A. and Arendt, E.K. (2012). “Green Preservatives”: combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Advances in Food and Nutrition Research, 66: 66: 217–238.
· Rossetti, L. and Giraffa, G. (2005). Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. Journal of Microbiological Methods, 63(2): 135-144.
· Rouse, S., Harnett, D., Vaughan, A. and Sinderen D. (2008). Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Journal of Applied Microbiology, 104(3): 915–923.
· Schnürer, J. and Magnusson, J. (2005). Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science and Technology, 16(1): 70–78.
· Sengun, I., Yaman, D. and Gonul, S. (2008). Mycotoxins and mould contamination in cheese: a review. World Mycotoxin Journal, 1(3): 291–298.
· Siedler, S., Balti, R. and Neves, A.R. (2019). Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Current Opinion in Biotechnology, 56: 138-146.
· Stroem, K., Schnuerer, J. and Melin P. (2005). Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiology Letters, 246: 119–124.
· Tropcheva, R., Nikolova, D., Evstatieva, Y. and Danova, S. 2014. Antifungal activity and identification of Lactobacilli, isolated from traditional dairy product “katak”. Anaerobe, 28: 78-84.
· Yang, E. and Chang, H. (2010). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology, 139(1): 56–63.
· Zhang, J., Wang, X. J., Yan, Y.J., Jiang, L., Wang, J.D., Li B.J. et al. (2010). Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from Actinoplanes sp. HBDN08 with antifungal activity. Bioresource Technology, 101(21): 8383–8388.