طراحی مدل پویا بازارهای مالی ایران با استفاده از پویایی شناسی سیستم
محورهای موضوعی : حسابداری مدیریتمعصومه میرزایی نژاد لیمویی 1 , رضا رادفر 2 , میرفیض فلاح 3 , کیامرث فتحی هفشجانی 4
1 - دانشجوی دکتری مدیریت صنعتی گرایش مالی ، گروه مدیریت صنعتی ،دانشکده مدیریت و اقتصاد ،واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی ،تهران،
2 - استاد تمام عضو هیات علمی گروه مدیریت صنعتی ،دانشکده مدیریت و اقتصاد ،واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی ، تهران، ایران.(نویسنده مسئول)
3 - دانشیار، گروه مدیریت مالی ، دانشگاه آزاد اسلامی ،واحد تهران مرکزی ، ایران
4 - استادیار گروه مدیریت صنعتی ، دانشکده مدیریت، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران ، ایران
کلید واژه: پویایی بازارهای مالی ایران, سرمایهگذاری, پویاییشناسی سیستم, سیاستهای توسعه بازارهای مالی,
چکیده مقاله :
بررسی شاخص های کلان و سطح توسعه یافتگی اقتصاد نشان از ناکارامدی بازارهای مالی دارد. بخش محدودی از تولید ناخالص داخلی به سرمایه گذاری در تولید کالا و خدمات اختصاص یافته و بخش قابل توجهی از آن جذب فعالیت های سوداگرانه در بازارهای مالی غیرمولد می شود. پژوهش حاضر به مدل سازی عملکرد بازارهای مالی با استفاده از پویایی سیستم پرداخته است. برای این منظور ابتدا با استفاده از داده های بازارهای مالی طلا، زمین و ساختمان، بازار سرمایه، سپرده گذاری در بانک، پویایی بازارها و پیامدهای مالی ناشی از سرمایه گذاری در بازارها بررسی گردید. مدل پویایی بازارهای مالی طراحی و پس از اعتبارسنجی مدل، شبیه سازی در افق ده ساله (1398-1408) انجام شد. با توجه به رفتار متغیرها و تحلیل حساسیت مدل، سیاست های توسعه بازارهای مالی شامل "توسعه بازار سرمایه"، "سیاست پولی کاهش نقدینگی"،"ساماندهی بازار زمین و ساختمان" و "ساماندهی بازار طلا " شناسایی و به صورت جداگانه روی مدل اعمال شد و نتایج مقایسه و رفتار تحلیل گردید. با توجه به یافته های مدل، سیاست های ترکیبی به عنوان بهترین سیاست های توسعه بازارهای مالی مولد مبتنی بر پویایی بازارهای مالی ایران ارائه شده است.
Examination of macro indicators and the level of economic development shows the inefficiency of financial markets. A limited portion of GDP is devoted to investing in the production of goods and services, and a significant portion of it is absorbed in speculative activities in unproductive financial markets. The present study has modeled the performance of financial markets using system dynamics. For this purpose, first using the financial markets data of gold, land and construction, capital market, bank deposits, market dynamics and financial consequences of investing in markets were examined. The financial markets dynamics model was designed and after model validation, simulation was performed on a ten-year horizon (1408-1398). According to the behavior of variables and model sensitivity analysis, financial market development policies including "capital market development", "liquidity reduction monetary policy", "land and building market organization" and "gold market organization" are identified and identified separately. The model was applied and the results of comparison and behavior were analyzed. According to the model findings, hybrid policies have been presented as the best policies for the development of productive financial markets based on the dynamics of Iran's financial markets.
[1] Zomordian, Gholamreza; Shabanzadeh, Mehdi; Faryaders, Wali Allah. 2014. Investigating and comparing investment security in the stock, gold, foreign exchange and housing markets of Iran using the criterion of risk value. Investment knowledge.4 (13). 63-84.
[2] Economic Statistics Office of the Central Bank of the Islamic Republic of Iran. Macroeconomic time series data of the country, 1400.
[3] Garshasbi, Firoozjaei Literature, Baqer, Mousavi. (1396). Investigating the development of the country's financial markets with emphasis on the banking system from the perspective of competitiveness of the World Economic Forum. Business Reviews, 15. 7-19.
[4] Abtahi, S., azadineghad, A. (2019). threshold cointegration of the stock market returns and currency and gold markets in Iran. , 10(38), 1-18.
[5] Rashnavadi Y, Norouzi H, Firoozansarnaghi T, Beigi S. Investigation Interaction between Exchange Rate and Stock Market in Iran: A Simultaneous Equation System Approach. jemr. 2020; 10 (39) :113-148.
[ 6] Salahmanesh, A., Arman, S., Anvari, E., Pourjavan, A. (2018). The Estimation of Capital Market Dynamisms in Iran’s Real Sector Economy in a DSGE Model. Quarterly Journal of Quantitative Economics, 15(1), 147-179. doi: 10.22055/jqe.2018.21758.1616.
[7] Jalili. 2014. Gold Dynamics Dynamics and the Most Important Factors Affecting It: Panel Data. Journal of Economic Modeling, 7 (24), 103-120.
[8] Ranjandish, N., Damankeshideh, M., Momeni Vesalian, H., Afsharirad, M. (2020). The Effects of Monetary and Fiscal Policies on the Systemic Risk of Iran's Financial Markets (SURE Approach in Panel Data). Iranian Journal of Finance, 4(1), 1-24. doi: 10.22034/ijf.2020.230256.1123.
[9] Sedaghati, S., Farhadi, R., & Fallashamss, M. F. (2020). CONTAGION DYNAMICS IN THE IRANIAN STOCK MARKET. PalArch's Journal of Archaeology of Egypt/Egyptology, 17(9), 9466-9478.
[10] Rozban, Narges. (1393). Housing financing with emphasis on the secondary mortgage market. Scientific Journal of Housing Economics. No. 50, 69-96.
[11] Rahmani, Teymour and Isfahani, Pouria. (1394). An analysis of the effect of supply and demand factors on housing prices. Scientific Quarterly of Housing Economics in Iran; No. 55, 11-30.
[12] Ebrahimi, P., Fekete-Farkas, M., Bouzari, P., & Magda, R. (2021). Financial Performance of Iranian Banks from 2013 to 2019: A Panel Data Approach. Journal of Risk and Financial Management, 14(6), 257.
[13] Pazouki, P., Simkhah, M., & JAMALI, A. (2021). Identifying the effect of dynamic interaction of financial markets on the global gold market and the Iranian stock market.
[14] Tiemoori, B., Emamverdi, G., Esmaeeilniya Ktabi, A., & Nessabian, S. (2020). The Investigation of Contagion Unanticipated Shocks in Iranian Financial Markets by DFGM Approach.
[15] Dehbashi, Vahid, Teymour Mohammadi, Javid Bahrami, and Abbas Shakeri. (2020). "Comparing the Volatility Spillovers among Financial Markets in Iran pre and post JCPOA: A VAR-BEKK-GARCH Approach." Iranian Economic Review (2020).
[16] Jafarzadehpour, Forouzandeh; Nazemi and Asadi. 2018. Analysis of financial markets trends in the context of environmental changes. Management Futurology, 26 (No. 4 (105)), 59-67.
[17] Jafarzadehpour, Forouzandeh; Nazemi and Asadi. 2017. Methods for predicting financial markets in the event of a structural rupture. Management Futurology. 28 (No. 2 (109 consecutive)). 41-53.
[18] Fattahi, Soheili, Dehghan Jabarabadi. 2017. Investigation of transmission in Iranian financial markets using a combination of the Orenstein-Olenbeck process and continuous wavelet transform. Econometric Modeling, 2 (4), 33-54.
[19] Kristjanpoller, W., & Minutolo, M. C. (2015). Gold price volatility: A forecasting approach using the Artificial Neural Network–GARCH model. Expert Systems with Applications, 42(20), 7245-7251.
[20] Oesterreich, T. D., & Teuteberg, F. (2019). Integrating system dynamics and VoFI for the dynamic visualization of financial implications arising from IT and IS investments. Journal of Modelling in Management.
[21] Fatone, L., & Mariani, F. (2019). An assets-liabilities dynamical model of banking system and systemic risk governance. Ar Xiv preprint arXiv: 1905.12431.
[22] Mohammadi, Mosleh Shirazi, Ali Naghi; Abbasi, Abbas, Akhlaghpour, Saeed. (2019). Simulation of linguistic variables interactions in the capital market development process using fuzzy inference system and system dynamics approach. Financial Management Strategy 7 (2). Pp. 229-261.
[23] Sajjad, Seyed Saeed and Pouya, Alireza and Rahimnia, Fariborz and Sibouyeh, Ali, 1398, Designing a dynamic model for determining the price level of private sector housing units and reviewing effective policies, Second National Conference of the Iranian Association of Systems Dynamics, Tehran
[24] Mousavi Haghighi, M., Khalifeh, M., Safaei, B., Saberi, H. (2016). Simulation of Stock Price through Effective Internal and External Factors via System Dynamics Approach. Journal of Asset Management and Financing, 4(4), 79-98. doi: 10.22108/amf.2016.21114
[25] Sterman, J.D. (2000) “Business Dynamics. System Thinking and Modeling for Complex World”Boston, McGraw-Hill.
_||_