تاثیر قوامیابی با استفاده از حرارت بر خواص فیزیکوشیمیایی ژل سوریمی ماهی کپور پرورشی(Cyprinuscarpio)
محورهای موضوعی :
علوم و صنایع غذایی
شیما زمانینژاد
1
*
,
بهاره شعبانپور
2
,
علی شعبانی
3
1 - دانشآموخته کارشناسی ارشد فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 - دانشیار گروه شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 - دانشیار گروه شیلات، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
تاریخ دریافت : 1393/03/31
تاریخ پذیرش : 1394/04/26
تاریخ انتشار : 1394/03/01
کلید واژه:
ماهی,
کپورپرورشی,
قوامیابی,
سوریمی,
چکیده مقاله :
در سال های اخیر پرورش ماهیان آب شیرین، بهویژه ماهیان گرمابی افزایش یافته است. در پرورش کپور ماهیان چینی، کپور معمولی (CyprinusCarpio) ۱۵-۲0 درصد از ترکیب ماهیان پرورشی را تشکیل می دهد. برای تنوع بخشی به فرآورده های غذایی حاصل از کپور پرورشی می توان آن را تبدیل به محصولات با ارزش افزوده و آماده مصرف مانند سوسیس، کالباس، برگر و غیره نمود. یکی از فرآورده های حدواسط برای تولید غذاهای آماده مصرف، سوریمی می باشد. اختصاصات بافتی محصولات تولید شده از سوریمی، بستگی به توانایی تولید ژل آن دارد.از طریق پخت اولیه سوریمی (قوام یابی) می توان ژل مقاوم تر تولید نمود. در این تحقیق اثر قوامیابی در حرارتبالا و پایین بر خواص تولید ژل ماهی کپور پرورشی مورد مطالعه قرار گرفت. برای این منظور تیمارهای شاهد، سووآری و کامابوکو در نظر گرفته شد. ژل های سووآری و کامابوکو جهت قوامیابی در 35 درجه سلسیوس به مدت 1 ساعت و در4 درجه سلسیوس به مدت 12 ساعت قرار گرفتند. ژل های سوواری پس از قوام یابی سردسازی شدند اما ژل های کامابوکو ابتدا پخته و سپس سردسازی شدند. آزمایشات ظرفیت نگهداری آب، حلالیت پروتئین، پپتیدهای محلول، الکتروفورز ژل (SDS-PAGE)، تست پانکچر و رنگ سنجی انجام شد. طبق نتایج بدست آمده کمترین میزان شاخص های سفیدی و L* در تیمار شاهد مشاهده شد. ژل های قوام یافته در 35 درجه سلسیوس بیشترین قدرت، ظرفیت نگهداری آب و پپتیدهای محلول در TCA را نشان دادند و دارای کمترین حلالیت پروتئین و وزن مولکولی میوزین بودند. نتایج نشان داد ژل های قوام یافته در حرارت بالا دارای خواص فیزیکوشیمیایی بهتری نسبت به ژل های قوام یافته در حرارت پایین بودند.
چکیده انگلیسی:
Freshwater aquaculture especially hydrothermal fish is increased in recent years. In Chinese carp aquaculture, common carp (CyprinusCarpio)comprises the 15-20 percent of the aquaculture system. Foods obtained from farmed carps could be turn into value-added and ready to eat products such as sausages, salami, burgers and etc. Surimi is one of the intermediate products to make ready to eat foods. Texture properties of surimi products depend mainly on its gelation ability. Through basic preparation of fish paste (setting) for last cooking it would be possible to produce stronger gels. In this research the effect of high and low temperature setting on gelation characteristics of farmed common carp surimi wasinvestigated. For this end, control, kamaboko and suwari treatments were considered. Suwari and kamaboko gels were located at 35°C for 1 hour followed by storage at 4 °C for 12 hours. After setting the suwari gels were cooled,however kamaboko gels were cooked prior to cooling.All samples were examined for water holding capacity, protein solubility, soluble peptides, gel electrophoresis (SDS-PAGE), puncture test and color evaluation. According to the results the lowest rate of whiteness and L* indices were observed in control group. Set gels at 35 °C demonstrated the highest strength, water holding capacity and soluble peptides in TCA and also had the lowest protein solubility and molecule weight of myosin. The results showed that set gels in high temperature results in better physicochemical properties than the gels set at low temperature.
منابع و مأخذ:
پروانه، ویدا (1٣77). کنترل کیفی و آزمایشهای شیمیایی مواد غذایی، انتشارات دانشگاه تهران، صفحه: ٣۲۵.
حسینی، نصرالله (1392). پایاننامه کارشناسی ارشد، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
رضوی شیرازی، حسن (1380). تکنولوژی فرآوردههای دریایی، علم فرآوری (2). انتشارات نقش مهر. صفحه: 922.
شعبانپور، بهاره؛ پورعاشوری، پرستو؛ خواجه، مهدیس؛ زنگوییفر، لیلا و شهروزفر، شادی (1387). اثر فرآیند شستشو، قبل و بعد از چرخ کردن بر کیفیت فراورده حاصل گوشت ماهی کپور معمولی. مجله پژوهش و سازندگی در امور دام و آبزیان، شماره 81، صفحات: 66-72.
شعبانپور، بهاره؛ شعبانی، علی؛ معینی، سهراب؛ حامدی، منوچهر و پورکبیره، ملیحه (1385). اثر شرایط مختلف شستشو بر ترکیب شیمیایی وخواص تولید ژل سوریمی کیلکای آنچوی (Clupeonellaengrauliformis). مجله پژوهش و سازندگی در امور دام و آبزیان، شماره 72، صفحات: 84-92.
شویک لو، غلامرضا (1378). راهنمای تولید خمیر و فرآوردههای خمیری ماهی. انتشارات نقش مهر، صفحه: 82.
Alvarez, C. and Tejada, M. (1997). Influence of texture of suwari gels on kamabok gels made from sardine (Sardinapilchardus) surimi, Journal of the Science of Food and Agriculture, 75: 472-480.
Alvarez, C., Couso, I. and Tejada, M. (1999). Thermal gel degradation (Modori) in sardine surimi gels, Journal of Food Science, 64: 633-637.
Amiza, M.A. and Kang, W.C. (2013). Effect of chitosan on gelling properties, lipid oxidation, and microbial load of surimi gel made from African catfish (Clariasgariepinus), Journal of International Food Research, 20: 1585-1594.
An, H., Peters, M.Y. and Seymour, T.A. (1996). Roles of endogenous enzymes in suirmi gelation, Journal of Food Science and Technology, 7: 321–326.
Balune, K., Morioka, K. and Itoh, Y. (2010). Effect of KBrO3 on gel forming properties of Walleye Pollack surimi through setting with or without transglutaminase inhibitor, Journal of Biological Science, 13: 1-8.
Benjakul, S., Visessangua, W., Tanaka, M., Ishizaki, S., Suthidham, R. and Sungpech, O. (2000). Effect of chitin and chitosan on gelling properties of surimi from barred garfish (Hemiramphus far), Journal of the Science of Food and Agriculture, 81: 102-108.
Benjakul, S., Visessanguan, W. and Chantarasuwan, C. (2003). Effect of medium temperature setting on gelling characteristic of surimi from some tropical fishes, Journal of Food Chemistry, 82: 567–574.
Damodaran, S. (1996). Amino acids, peptides and proteins. In: Fennema OR, editor. Food Chemistry. 2nd ed. New York: Marcel Dekker, pp. 321–429.
Eymard, S., Baron, C.P. and Jacobsen, C. (2009).Oxidation of lipid and protein in horse mackerel (Trachurustrachurus) mince and washed minces during processing and storage, Journal of Food Chemistry, 114: 57-65.
Hai-hua, C. and Chang-hua, X. (2010). Effects of washing media and thermal treatment on gel properties of painted Lizardfish surimi, Journal of Food science and Industry, 31: 11-18.
Hashimoto, A., Nishimoto, S. and Katoh, N. (1986). Quality control of gel-forming ability in the manufacturing of the ‘‘Kamaboko’’-3. Effect of temperature and length of incubation period of salted fish paste on the gel strength of kamaboko, made from 3 different species of fish, Journal of Bull. Fac. Fish Hokkaido University, 37: 85-94.
Hermansson, A.M. (1986). Water and fat-holding. In: Mitchell JR, Ledward DA, editors. Functional properties of food macromolecules. London: Elsevier Applied Science Publishers, pp. 273–314.
Karayannakidis, P.D., Zotos, A., Petridis, D. and Taylor, K.D.A. (2007). The effect ofinitial wash at acidic and alkaline pHs on the properties of protein concentrate (kamaboko) products from sardine (Sardinapilchardus) samples, Journal of FoodEngineering,78: 775-783.
Kinsella, J.E. (1982). Relationship between structure and functional properties of food proteins. In: Fox PF, Condon JJ, editors. Food proteins. New York: Applied Science Publishers, pp. 51–103.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of head of bacteriophage T4, Journal of Food Science, 227: 680–685.
Lanier, T.C. (1992). Measurement of surimi composition and functional properties, Journal of Surimi Technology, 98: 123–166.
Lowry, O.H., Rosebrough, N.J., Fan, A.L. and Randall, R.J. (1951).Protein measurement with Folin phenol reagent, Journal of Biological Chemistry, 193: 256–275.
Mahawanich, T. (2008). Preparations and properties of surimi gels from Tilapia and Red Tilapia, Naresuan University Journal, 16(2): 105-111.
Mohan, M., Ramachandran, D., Sankar, T. and Anandan, R. (2008). Physicochemical characterization of muscle proteins from different region of mackerel, Journal of Food Chemistry, 106: 451-457.
Morales, O., Demian I. and Ramirez, J. (2001). Surimi of fish species from the Gulf of Mexico: evaluation of the setting phenomenon, Journal of Food Chemistry, 75: 43-48.
Niwa, E. and Lanier, C. (1992). Chemistry of surimi gelation, Journal of Surimi Technology, 78: 389–428.
Nopianti, R., Huda, N., Fazilah, A. and Ismail, N. (2012). Effect of different types of low sweetness sugar on physicochemical properties of threadfin bream surimi (Nemipterusspp.) during frozen storage, Journal of International Food Research, 19: 1011-1012.
Ohkuma, C., Kawai, K., Viriyarattanasak, C., Mahawanich, T., Tantratian, S. and Takai, R. (2008). Glass transition properties of frozen and freeze-dried surimi products: Affect of sugar and moisture on the glass transition temperature, Journal of Food Research, 22: 255-262.
Pinapinat, W., Chaijan, M. and Benjakul, S. (2010). Gel properties of croaker–mackerel surimi blend, Journal of Food Chemistry, 122: 1122-1128.
Rawdkuen, S. and Benjakul, S. (2008). Whey protein concentrate: Autolysis inhibition and effects on the gel properties of surimi prepared from tropical fish, Journal of Food Chemistry, 106: 1077–1084.
Schmidt, R.H. (1981). Gelation and coagulation. In: Cherry JP, editor. Protein functionality in foods.Washington, D.C.: American Chemical Society, ACS Symposium Series 147, pp. 131–47.
Shie, J.S. and Park, J.W. (1999). Physical characteristics of surimi seafood as affected by thermal processing conditions, Journal of Food Science, 64: 287-290.
Tina, N., Nurul, H. and Ruzita, A. (2010). Review Article Surimi-like material: challenges and prospects, Journal of International Food Research, 17: 509-517.
Umemoto, S. (1966).A modified methods for estimation of fish muscle protein by Biuret method. Bulletin of the Japanese Society of Scientific Fisheries, 32: 427–435.
WU, M.C., Lanier, T.C. and Hamann, D.D. (1991). Rigidity and viscosity changes of croaker actomyosin during thermal gelation, Journal of Food Science, 50:14–19.
Zhang, M., Mittal, G.S. and Barbut, S. (1995). Effects of test conditions on the water holding capacity of meat by a centrifugal method, Journal of LWT–Food Science and Technology, 28(1): 50-55.
· Arfat, Y.A. and Benjakul, S. (2012). Gelling characteristics of surimi from yellow stripe trevally (Selaroidesleptolepis), Journal of International Aquatic Research, 45: 12-25
· Bertak, J.A. and Karahadian, C. (1995). Surimi-Based Imitation Crab Characteristics Affected by Heating Method and End Point Temperature. Journal of Food Science, 60: 292-296.
· Joseph, D., Lanier, T.C. and Hamann, D.D. (1994). Temperature and pH affect transglutaminasecatalyzed “setting” of crude fish actomyosin, Journal of Food Science, 59: 1018-1023.
· Julavittayanukul, O., Benjakul, S. and Vissanguan, W. (2006). Effect of phosphate compounds on gel-forming ability of surimi from bigeye snapper (Priacanthustayenus), Journal of Food Hydrocolloids, 20: 1153-1163.
· Skonberg, D.I. and Baxter, S.R. (2008). Gelation properties of previously cooked minced meat from Jonah crab (Cancer borealis) as affected by washing treatment and salt concentration, Journal of Food Chemistry, 109: 332-339.
· Stone, A.P. and Stanley, D.W. (1992). Mechanisms of fish muscle gelation, Journal of Food Research, 25: 381-388.
_||_
Alvarez, C. and Tejada, M. (1997). Influence of texture of suwari gels on kamabok gels made from sardine (Sardinapilchardus) surimi, Journal of the Science of Food and Agriculture, 75: 472-480.
Alvarez, C., Couso, I. and Tejada, M. (1999). Thermal gel degradation (Modori) in sardine surimi gels, Journal of Food Science, 64: 633-637.
Amiza, M.A. and Kang, W.C. (2013). Effect of chitosan on gelling properties, lipid oxidation, and microbial load of surimi gel made from African catfish (Clariasgariepinus), Journal of International Food Research, 20: 1585-1594.
An, H., Peters, M.Y. and Seymour, T.A. (1996). Roles of endogenous enzymes in suirmi gelation, Journal of Food Science and Technology, 7: 321–326.
Balune, K., Morioka, K. and Itoh, Y. (2010). Effect of KBrO3 on gel forming properties of Walleye Pollack surimi through setting with or without transglutaminase inhibitor, Journal of Biological Science, 13: 1-8.
Benjakul, S., Visessangua, W., Tanaka, M., Ishizaki, S., Suthidham, R. and Sungpech, O. (2000). Effect of chitin and chitosan on gelling properties of surimi from barred garfish (Hemiramphus far), Journal of the Science of Food and Agriculture, 81: 102-108.
Benjakul, S., Visessanguan, W. and Chantarasuwan, C. (2003). Effect of medium temperature setting on gelling characteristic of surimi from some tropical fishes, Journal of Food Chemistry, 82: 567–574.
Damodaran, S. (1996). Amino acids, peptides and proteins. In: Fennema OR, editor. Food Chemistry. 2nd ed. New York: Marcel Dekker, pp. 321–429.
Eymard, S., Baron, C.P. and Jacobsen, C. (2009).Oxidation of lipid and protein in horse mackerel (Trachurustrachurus) mince and washed minces during processing and storage, Journal of Food Chemistry, 114: 57-65.
Hai-hua, C. and Chang-hua, X. (2010). Effects of washing media and thermal treatment on gel properties of painted Lizardfish surimi, Journal of Food science and Industry, 31: 11-18.
Hashimoto, A., Nishimoto, S. and Katoh, N. (1986). Quality control of gel-forming ability in the manufacturing of the ‘‘Kamaboko’’-3. Effect of temperature and length of incubation period of salted fish paste on the gel strength of kamaboko, made from 3 different species of fish, Journal of Bull. Fac. Fish Hokkaido University, 37: 85-94.
Hermansson, A.M. (1986). Water and fat-holding. In: Mitchell JR, Ledward DA, editors. Functional properties of food macromolecules. London: Elsevier Applied Science Publishers, pp. 273–314.
Karayannakidis, P.D., Zotos, A., Petridis, D. and Taylor, K.D.A. (2007). The effect ofinitial wash at acidic and alkaline pHs on the properties of protein concentrate (kamaboko) products from sardine (Sardinapilchardus) samples, Journal of FoodEngineering,78: 775-783.
Kinsella, J.E. (1982). Relationship between structure and functional properties of food proteins. In: Fox PF, Condon JJ, editors. Food proteins. New York: Applied Science Publishers, pp. 51–103.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of head of bacteriophage T4, Journal of Food Science, 227: 680–685.
Lanier, T.C. (1992). Measurement of surimi composition and functional properties, Journal of Surimi Technology, 98: 123–166.
Lowry, O.H., Rosebrough, N.J., Fan, A.L. and Randall, R.J. (1951).Protein measurement with Folin phenol reagent, Journal of Biological Chemistry, 193: 256–275.
Mahawanich, T. (2008). Preparations and properties of surimi gels from Tilapia and Red Tilapia, Naresuan University Journal, 16(2): 105-111.
Mohan, M., Ramachandran, D., Sankar, T. and Anandan, R. (2008). Physicochemical characterization of muscle proteins from different region of mackerel, Journal of Food Chemistry, 106: 451-457.
Morales, O., Demian I. and Ramirez, J. (2001). Surimi of fish species from the Gulf of Mexico: evaluation of the setting phenomenon, Journal of Food Chemistry, 75: 43-48.
Niwa, E. and Lanier, C. (1992). Chemistry of surimi gelation, Journal of Surimi Technology, 78: 389–428.
Nopianti, R., Huda, N., Fazilah, A. and Ismail, N. (2012). Effect of different types of low sweetness sugar on physicochemical properties of threadfin bream surimi (Nemipterusspp.) during frozen storage, Journal of International Food Research, 19: 1011-1012.
Ohkuma, C., Kawai, K., Viriyarattanasak, C., Mahawanich, T., Tantratian, S. and Takai, R. (2008). Glass transition properties of frozen and freeze-dried surimi products: Affect of sugar and moisture on the glass transition temperature, Journal of Food Research, 22: 255-262.
Pinapinat, W., Chaijan, M. and Benjakul, S. (2010). Gel properties of croaker–mackerel surimi blend, Journal of Food Chemistry, 122: 1122-1128.
Rawdkuen, S. and Benjakul, S. (2008). Whey protein concentrate: Autolysis inhibition and effects on the gel properties of surimi prepared from tropical fish, Journal of Food Chemistry, 106: 1077–1084.
Schmidt, R.H. (1981). Gelation and coagulation. In: Cherry JP, editor. Protein functionality in foods.Washington, D.C.: American Chemical Society, ACS Symposium Series 147, pp. 131–47.
Shie, J.S. and Park, J.W. (1999). Physical characteristics of surimi seafood as affected by thermal processing conditions, Journal of Food Science, 64: 287-290.
Tina, N., Nurul, H. and Ruzita, A. (2010). Review Article Surimi-like material: challenges and prospects, Journal of International Food Research, 17: 509-517.
Umemoto, S. (1966).A modified methods for estimation of fish muscle protein by Biuret method. Bulletin of the Japanese Society of Scientific Fisheries, 32: 427–435.
WU, M.C., Lanier, T.C. and Hamann, D.D. (1991). Rigidity and viscosity changes of croaker actomyosin during thermal gelation, Journal of Food Science, 50:14–19.
Zhang, M., Mittal, G.S. and Barbut, S. (1995). Effects of test conditions on the water holding capacity of meat by a centrifugal method, Journal of LWT–Food Science and Technology, 28(1): 50-55.
· Arfat, Y.A. and Benjakul, S. (2012). Gelling characteristics of surimi from yellow stripe trevally (Selaroidesleptolepis), Journal of International Aquatic Research, 45: 12-25
· Bertak, J.A. and Karahadian, C. (1995). Surimi-Based Imitation Crab Characteristics Affected by Heating Method and End Point Temperature. Journal of Food Science, 60: 292-296.
· Joseph, D., Lanier, T.C. and Hamann, D.D. (1994). Temperature and pH affect transglutaminasecatalyzed “setting” of crude fish actomyosin, Journal of Food Science, 59: 1018-1023.
· Julavittayanukul, O., Benjakul, S. and Vissanguan, W. (2006). Effect of phosphate compounds on gel-forming ability of surimi from bigeye snapper (Priacanthustayenus), Journal of Food Hydrocolloids, 20: 1153-1163.
· Skonberg, D.I. and Baxter, S.R. (2008). Gelation properties of previously cooked minced meat from Jonah crab (Cancer borealis) as affected by washing treatment and salt concentration, Journal of Food Chemistry, 109: 332-339.
· Stone, A.P. and Stanley, D.W. (1992). Mechanisms of fish muscle gelation, Journal of Food Research, 25: 381-388.