مطالعه اثر ضدمیکروبی عصارههای مختلف اسفند (Peganum harmala)، رزماری (Rosmarinus officinalis) و برگ بو (Laurus nobilis) استخراج شده با امواج فراصوت
محورهای موضوعی : علوم و صنایع غذایی
1 - استادیار دانشکده فنی، دانشگاه محقق اردبیلی، اردبیل، ایران
2 - دانشجوی کارشناسی ارشد گروه صنایع غذایی، واحد سراب، دانشگاه آزاد اسلامی، سراب، ایران
کلید واژه: فعالیت ضدمیکروبی, اسفند, رزماری, برگبو, امواج مافوقصوت,
چکیده مقاله :
این مطالعه بهمنظور بررسی اثر ضدباکتریایی عصارههای اسفند، رزماری و برگ بو علیه باکتریهای استافیلوکوکوس اورئوس و اشریشیا کولای انجام شد. برای این منظور، استخراج عصاره گیاهان ذکر شده با استفاده از دستگاه مافوقصوت و استفاده از حلالهای آبی، هیدروالکلی، الکلی و کلروفرم انجام گردید. جهت بررسی فعالیت ضدمیکروبی عصارهها از روش میکرودایلوشن براث استفاده گردید و نتایج به دو صورت حداقل غلظت مهارکنندگی و حداقل غلظت کشندگی مورد ارزیابی قرار گرفتند. براساس نتایج مطالعه، تمامی عصارههای بهدست آمده دارای فعالیت ضدمیکروبی در مقابل باکتریهای مذکور بودند. در این میان عصاره الکلی دارای بیشترین اثر ضدمیکروبی بود. با مقایسه نتایج حاصل از اثرات ضدمیکروبی رزماری، اسفند و برگبو، هر سه گیاه دارای اثر بازدارندگی یکسانی در رقت 25/6% علیه باکتری اشریشیا کولای بودند. در مورد باکتری استافیلوکوکوس اورئوس عصاره الکلی و آبی اسفند بیشترین اثرکشندگی را در رقت 25/6% داشت. طبق یافتههای مطالعه میتوان به این نتیجه رسید که استفاده از امواج مافوقصوت، روشی سریع، موثر و اقتصادی برای عصارهگیری از اجزای گیاهی میباشد. بهعلاوه، از میان حلالهای آبی، هیدروالکلی، الکلی و کلروفرم، حلال الکلی جهت استخراج عوامل ضدمیکروبی موجود در گیاهان مناسبتر است.
The present study was aimed to investigate the antibacterial activities of the Laurus nobilis,Peganumharmala and rosemary extracts against Staphylococcus aureus and Escherichia coli. Thus, the ultrasonic extracts were performed using the aqueous, ethanol, hydro-alcoholic or chloroform phases. The microdilution technique was used to evaluate the antibacterial activities which was finally reported as the MIC and MBC values. All the extracts showed the antibacterial activities against the bacteria at the concentration of 6.25%. However, the metalonic extract exert a maximum antibacterial activity. The extract of three plants revealed the same antibacterial activity against E. coli, but the ethanoloic extract from P. harmala showed a maximum antibacterial activity against S. aureus at the concentration of 6.25%. Results of the current study showed the similar antibacterial activities of the extracts against E. coli; meanwhile, the maximum antibacterial effect on S. aureus was observed by applying alcohol or water as a solvent. In general, this paper proposed that ultrasound assisted extraction was quick and cost effective approach to extract the plants. In addition, ethanolic solvent was found as the best selection among the aqueous, hydro-alcoholic or chloroform solvents.
مازندرانی، معصومه؛ قائمی، عزت اله و غفاری، فاطمه (1388). بررسی اثر ضد باکتریایی عصارههای مختلف اندامهای گیاه دارویی اسفند (Peganum harmala L) در شمال شرق استان گلستان (اینجه برون). فصلنامه علمی پژوهشی پژوهشهای علوم گیاهی، سال 4، جلد 3، شماره 15، صفحات: 38-27.
● داودی، ویدا و گلشنی، زینب (1392). مطالعه اثرات ضدمیکروبی عصاره متانولی برگ رزماری روی سویههای بیماریزا در شرایط آزمایشگاهی. مجله علمی پژوهشی دانشگاه علوم پزشکی اراک، سال 16، شماره 8، صفحات: 89-82.
● دیبا، کامبیز؛ گرامی شعار، محسن؛ شربت خوری، میترا و حسینپور، لیلی (1388). بررسی میزان مهارکنندگی عصاره الکلی دانه گیاه اسپند Peganum harmala بر روی گونههای کاندیدا و آسپرژیلوس در شرایط آزمایشگاهی. مجله پزشکی ارومیه. شماره 20، صفحات: 271-277.
Abdel Aziz, N.G., Abdel Kader, S.M., El-Sayed, M.M., EL-Malt, E.A. and Shaker, E.S. (2010). Novel carboline alkaloid from Peganumharmala as antibacterial agant. Proceedings of the Tenth Radiation Physics and Protection Conference, 359: 27-30.
● Arshad, N., Zitterl-Eglseer, K., Hasnain, S. and Hess, M. (2008). Effect of Peganumharmala or its beta-carboline alkaloids on certain antibiotic resistant strains of bacteria and protozoa from poultry. Phytotherpy Research, 22: 1533–1538.
● Da Silveira, S.M., Luciano, F.B. Fronza, N., Cunha, A. , Scheuermann, G.N. and Werneck Vieira, C.R. (2014). Chemical composition and antibacterial activity of Laurusnobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7 °C, Food Science and Technology, 59(1): 86-93.
● Diba, K., Geramishoar, M., Sharbatkhori, M. and Hosseinpur, L. (2010). Antifungal activity of alcoholic extract of Peganum harmala in vitro, Urmia Medical Journal, 20(4): 277-271. [in Persian]
● Edziri, H., Mastouri, M., Mahjoub, M.A., Patrich, G., Matieu, M., Ammar, S., Ali, S.M., Laurent, G., Zine, M. and Aouni, M. (2010). Antibacterial, antiviral and antioxidant activities of aerial part extracts of Peganum harmala L. grown in Tunisia. Toxicological & Environmental Chemistry, 92 (7): 1283–1292.
● Fang, M., Chen, J.H., Xu, X.L., Yang, P.H. and Hildebr and, H.F. (2006). Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. International Journal of Antimicrobial Agents, 27(6): 513-517.
● Flamini, G., Tebano, M., Cioni, P. L., Ceccarini, L., Ricci, A. S. and Longo, I. (2007). Comparison between the conventional method of extraction of essential oil of Laurusnobilis L. and a novel method which uses microwaves applied in situ,without resorting to an oven. Journal of Chromatography A, 1143: 36-40.
● Davoodi, V. and Golshani, Z. (2013). In Vitro Antimicrobial Effect of Rosmarinus Officinalis Leaf Extract Against Some Pathogens. Arak Medical University Journal, 16(8): 78-84. [in Persian]
● Genena, A.K., Hense, H., Smania, A. and de Souza, S.M. (2008). Rosemary (Rosmarinusofficinalis): a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. CienciaTecnol Aliment, 28:463–469.
● He, L., Liu, Y., Mustapha, A. and Lin, M. (2010). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicilliumexpansum. Microbiological Research, 166 (3):207-215.
● Koffi , E., Sea, T., Dodehe ,Y. and Soro, S. (2010). Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants, Journal of Animal & Plant Sciences, 5(3): 550-558.
● Mazandarani, M., Ghaemi, E. and Ghaffari, F. (2009). Antibacterial survey of different extracts of Peganum harmala L. different parts in North east of Golestan province (Inche Borun), Journal on Plant Science Researches, 4(15): 38-27. [in Persian]
● Mahalingam, R., Bharathidasan, R., Ambikapathy, V. and Panneerselvam, A. (2011). Studies on antibacterial activity of some medicinal plant against Human pathogenic Micro Organism. Asian Journal of Plant Science and Research, 1 (3): 86-90
● Moreno, S., Scheyer, T., Romano, C.S. and Vojnov, A.A. (2006). Antioxidant and antibacterial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research, 40:223–231.
●Nur Syukriah, A.R., Liza, M.S., Harisun, Y. and Fadzillah, A.A.M. (2014). Effect of solvent extraction on antioxidant and antibacterial activities from Quercusinfectoria (Manjakani). International Food Research Journal, 21(3): 1067-1073.
● Ozcan, B., Esen, M., Sangun, M. K., Coleri, A. and Caliskan, M. (2010). Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. Journal of Environmental Biology, 31(5): 637-41.
● Prashanth, D. and John, S. (1999). Antibacterial activity of Peganumharmala. Fitoterapia, 70: 438–439.
● Romano, C.S., Abadi, K., Repetto, M.V., Vichera, G., Vojnov, A.A. and Moreno, S. (2009). Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chemistry, 115:456–461.
● Santoyo, S., Lloría, R., Jaime, L., Ibañez, E., Seoráns, F.J., and Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurusnobilis L. chemical and functional characterization. European Food Research and Technology, 222: 565–571.
● Sondi, I. and Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1): 177-82.
● Tatiya, A.U., Tapadiya, G.G., Kotecha, S. and Surana, S. J. (2011). Effect of solvents on total phenolics, antioxidant and antimicrobial properties of Bridelia retusa Spreng. stem bark. Indian Journal of Natural Products and Resources, 2(4): 442-447
● Tawale, J.S., Dey, K.K., Pasricha, R., Sood, K.N. and Srivastava, A.K.(2011). Synthesis and characterization of ZnOtetrapods for optical and antibacterial applications. Thin Solid Films, 519 (3): 1244-1247.
● Teruel, M.R., Dolores Garrido, M., Espinosa, M.C. and Belén Linares, M. (2015). Effect of different format-solvent rosemary extracts (Rosmarinus officinalis) on frozen chicken nuggets quality. Food Chemistry, 172: 40–46
● Thongson, C., Davidson, P.M., Mahakarnchanakul, W. and Weiss, J. (2004). Antimicrobial activity of ultrasound-assisted solvent-extracted spices. Letters in Applied Microbiology, 39: 401–406
● Vinatoru, M. (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonound Sonochemistry, 8(3): 303-313.
● Weerakkody, N.S., Caffin, N., Lambert,L.K., Turner, M.S. and A Dykes, G. (2011). Synergistic antimicrobial activity of galangal (Alpiniagalanga), rosemary (Rosmarinusofficinalis) and lemon iron bark (Eucalyptus staigerana) extracts. Journal of the Science of Food and Agriculture, 91: 461–468.
● Yoon, K.Y., Byeon, J.H., Park, J.H. and Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. International Biodeterioration and Biodegradation, 47: 23-26.
● Zhang, L., Ding, Y., Povey, M. and York, D. (2008). ZnO nanofluids - a potential antibacterial agent. Progress in Natural Science, 18(8): 939-944.
_||_●Abdel Aziz, N.G., Abdel Kader, S.M., El-Sayed, M.M., EL-Malt, E.A.and Shaker, E.S. (2010). Novel carboline alkaloid from Peganum harmala as antibacterial agant. Proceedings of the Tenth Radiation Physics and Protection Conference, 359: 27-30.
●Arshad, N., Zitterl-Eglseer, K., Hasnain, S. and Hess, M. (2008). Effect of Peganum harmala or its beta-carboline alkaloids on certain antibiotic resistant strains of bacteria and protozoa from poultry.Phytotherpy Research, 22: 1533–1538.
● Da Silveira, S.M., Luciano, F.B. Fronza, N., Cunha, A. , Scheuermann, G.N. and Werneck Vieira, C.R. (2014). Chemical composition and antibacterial activity of Laurusnobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7 °C, Food Science and Technology, 59(1): 86-93.
● Diba, K., Geramishoar, M., Sharbatkhori, M. and Hosseinpur, L. (2010). Antifungal activity of alcoholic extract of Peganum harmala in vitro, Urmia Medical Journal, 20(4): 277-271. [in Persian]
●Edziri, H., Mastouri, M., Mahjoub, M.A., Patrich, G., Matieu, M., Ammar, S., Ali, S.M., Laurent, G., Zine, M. and Aouni, M. (2010). Antibacterial, antiviral and antioxidant activities of aerial part extracts of Peganum harmala L. grown in Tunisia. Toxicological & Environmental Chemistry, 92 (7): 1283–1292.
●Fang, M., Chen, J.H., Xu, X.L., Yang, P.H. and Hildebr and, H.F. (2006). Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. International Journal of Antimicrobial Agents, 27(6): 513-517.
●Flamini, G., Tebano, M., Cioni, P. L., Ceccarini, L., Ricci, A. S. and Longo, I. (2007). Comparison between the conventional method of extraction of essential oil of Laurusnobilis L. and a novel method which uses microwaves applied in situ,without resorting to an oven. Journal of Chromatography A, 1143: 36-40.
● Davoodi, V. and Golshani, Z. (2013). In Vitro Antimicrobial Effect of Rosmarinus Officinalis Leaf Extract Against Some Pathogens. Arak Medical University Journal, 16(8): 78-84. [in Persian]
●Genena, A.K., Hense, H., Smania, A. and de Souza, S.M. (2008). Rosemary (Rosmarinusofficinalis): a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. CienciaTecnol Aliment, 28:463–469.
●He, L., Liu, Y., Mustapha, A. and Lin, M. (2010). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicilliumexpansum. Microbiological Research, 166 (3):207-215.
●Koffi , E., Sea, T., Dodehe ,Y. and Soro, S. (2010). Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants, Journal of Animal & Plant Sciences, 5(3): 550-558.
● Mazandarani, M., Ghaemi, E. and Ghaffari, F. (2009). Antibacterial survey of different extracts of Peganum harmala L. different parts in North east of Golestan province (Inche Borun), Journal on Plant Science Researches, 4(15): 38-27. [in Persian]
●Mahalingam, R., Bharathidasan, R., Ambikapathy, V. and Panneerselvam, A. (2011). Studies on antibacterial activity of some medicinal plant against Human pathogenic Micro Organism. Asian Journal of Plant Science and Research, 1 (3): 86-90
●Moreno, S., Scheyer, T., Romano, C.S. and Vojnov, A.A. (2006). Antioxidant and antibacterial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research, 40:223–231.
●NurSyukriah, A.R., Liza, M.S., Harisun, Y. and Fadzillah, A.A.M. (2014). Effect of solvent extraction on antioxidant and antibacterial activities from Quercusinfectoria (Manjakani). International Food Research Journal, 21(3): 1067-1073.
●Ozcan, B., Esen, M., Sangun, M. K., Coleri, A. and Caliskan, M. (2010). Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. Journal of Environmental Biology, 31(5): 637-41.
●Prashanth, D. and John, S. (1999). Antibacterial activity of Peganumharmala. Fitoterapia, 70: 438–439.
●Romano, C.S., Abadi, K., Repetto, M.V., Vichera, G., Vojnov, A.A. and Moreno, S. (2009). Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chemistry, 115:456–461.
●Santoyo, S., Lloría, R., Jaime, L., Ibañez, E., Seoráns, F.J., and Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurusnobilis L. chemical and functional characterization. European Food Research and Technology, 222: 565–571.
●Sondi, I. and Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1): 177-82.
●Tatiya, A.U., Tapadiya, G.G., Kotecha, S. and Surana, S. J. (2011). Effect of solvents on total phenolics, antioxidant and antimicrobial properties of Bridelia retusa Spreng. stem bark. Indian Journal of Natural Products and Resources, 2(4): 442-447
●Tawale, J.S., Dey, K.K., Pasricha, R., Sood, K.N. and Srivastava, A.K.(2011). Synthesis and characterization of ZnOtetrapods for optical and antibacterial applications. Thin Solid Films, 519 (3): 1244-1247.
●Teruel, M.R., Dolores Garrido, M., Espinosa, M.C. and Belén Linares, M. (2015). Effect of different format-solvent rosemary extracts (Rosmarinus officinalis) on frozen chicken nuggets quality. Food Chemistry, 172: 40–46
●Thongson, C., Davidson, P.M., Mahakarnchanakul, W. and Weiss, J. (2004). Antimicrobial activity of ultrasound-assisted solvent-extracted spices. Letters in Applied Microbiology, 39: 401–406
●Vinatoru, M. (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonound Sonochemistry, 8(3): 303-313.
●Weerakkody, N.S., Caffin, N., Lambert,L.K., Turner, M.S. and A Dykes, G. (2011). Synergistic antimicrobial activity of galangal (Alpiniagalanga), rosemary (Rosmarinusofficinalis) and lemon iron bark (Eucalyptus staigerana) extracts. Journal of the Science of Food and Agriculture, 91: 461–468.
●Yoon, K.Y., Byeon, J.H., Park, J.H. and Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. International Biodeterioration and Biodegradation, 47: 23-26.
●Zhang, L., Ding, Y., Povey, M. and York, D. (2008). ZnO nanofluids - a potential antibacterial agent. Progress in Natural Science, 18(8): 939-944.
●Abdel Aziz, N.G., Abdel Kader, S.M., El-Sayed, M.M., EL-Malt, E.A.and Shaker, E.S. (2010). Novel carboline alkaloid from Peganum harmala as antibacterial agant. Proceedings of the Tenth Radiation Physics and Protection Conference, 359: 27-30.
●Arshad, N., Zitterl-Eglseer, K., Hasnain, S. and Hess, M. (2008). Effect of Peganum harmala or its beta-carboline alkaloids on certain antibiotic resistant strains of bacteria and protozoa from poultry.Phytotherpy Research, 22: 1533–1538.
● Da Silveira, S.M., Luciano, F.B. Fronza, N., Cunha, A. , Scheuermann, G.N. and Werneck Vieira, C.R. (2014). Chemical composition and antibacterial activity of Laurusnobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7 °C, Food Science and Technology, 59(1): 86-93.
● Diba, K., Geramishoar, M., Sharbatkhori, M. and Hosseinpur, L. (2010). Antifungal activity of alcoholic extract of Peganum harmala in vitro, Urmia Medical Journal, 20(4): 277-271. [in Persian]
●Edziri, H., Mastouri, M., Mahjoub, M.A., Patrich, G., Matieu, M., Ammar, S., Ali, S.M., Laurent, G., Zine, M. and Aouni, M. (2010). Antibacterial, antiviral and antioxidant activities of aerial part extracts of Peganum harmala L. grown in Tunisia. Toxicological & Environmental Chemistry, 92 (7): 1283–1292.
●Fang, M., Chen, J.H., Xu, X.L., Yang, P.H. and Hildebr and, H.F. (2006). Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. International Journal of Antimicrobial Agents, 27(6): 513-517.
●Flamini, G., Tebano, M., Cioni, P. L., Ceccarini, L., Ricci, A. S. and Longo, I. (2007). Comparison between the conventional method of extraction of essential oil of Laurusnobilis L. and a novel method which uses microwaves applied in situ,without resorting to an oven. Journal of Chromatography A, 1143: 36-40.
● Davoodi, V. and Golshani, Z. (2013). In Vitro Antimicrobial Effect of Rosmarinus Officinalis Leaf Extract Against Some Pathogens. Arak Medical University Journal, 16(8): 78-84. [in Persian]
●Genena, A.K., Hense, H., Smania, A. and de Souza, S.M. (2008). Rosemary (Rosmarinusofficinalis): a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. CienciaTecnol Aliment, 28:463–469.
●He, L., Liu, Y., Mustapha, A. and Lin, M. (2010). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicilliumexpansum. Microbiological Research, 166 (3):207-215.
●Koffi , E., Sea, T., Dodehe ,Y. and Soro, S. (2010). Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants, Journal of Animal & Plant Sciences, 5(3): 550-558.
● Mazandarani, M., Ghaemi, E. and Ghaffari, F. (2009). Antibacterial survey of different extracts of Peganum harmala L. different parts in North east of Golestan province (Inche Borun), Journal on Plant Science Researches, 4(15): 38-27. [in Persian]
●Mahalingam, R., Bharathidasan, R., Ambikapathy, V. and Panneerselvam, A. (2011). Studies on antibacterial activity of some medicinal plant against Human pathogenic Micro Organism. Asian Journal of Plant Science and Research, 1 (3): 86-90
●Moreno, S., Scheyer, T., Romano, C.S. and Vojnov, A.A. (2006). Antioxidant and antibacterial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research, 40:223–231.
●NurSyukriah, A.R., Liza, M.S., Harisun, Y. and Fadzillah, A.A.M. (2014). Effect of solvent extraction on antioxidant and antibacterial activities from Quercusinfectoria (Manjakani). International Food Research Journal, 21(3): 1067-1073.
●Ozcan, B., Esen, M., Sangun, M. K., Coleri, A. and Caliskan, M. (2010). Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. Journal of Environmental Biology, 31(5): 637-41.
●Prashanth, D. and John, S. (1999). Antibacterial activity of Peganumharmala. Fitoterapia, 70: 438–439.
●Romano, C.S., Abadi, K., Repetto, M.V., Vichera, G., Vojnov, A.A. and Moreno, S. (2009). Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chemistry, 115:456–461.
●Santoyo, S., Lloría, R., Jaime, L., Ibañez, E., Seoráns, F.J., and Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurusnobilis L. chemical and functional characterization. European Food Research and Technology, 222: 565–571.
●Sondi, I. and Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1): 177-82.
●Tatiya, A.U., Tapadiya, G.G., Kotecha, S. and Surana, S. J. (2011). Effect of solvents on total phenolics, antioxidant and antimicrobial properties of Bridelia retusa Spreng. stem bark. Indian Journal of Natural Products and Resources, 2(4): 442-447
●Tawale, J.S., Dey, K.K., Pasricha, R., Sood, K.N. and Srivastava, A.K.(2011). Synthesis and characterization of ZnOtetrapods for optical and antibacterial applications. Thin Solid Films, 519 (3): 1244-1247.
●Teruel, M.R., Dolores Garrido, M., Espinosa, M.C. and Belén Linares, M. (2015). Effect of different format-solvent rosemary extracts (Rosmarinus officinalis) on frozen chicken nuggets quality. Food Chemistry, 172: 40–46
●Thongson, C., Davidson, P.M., Mahakarnchanakul, W. and Weiss, J. (2004). Antimicrobial activity of ultrasound-assisted solvent-extracted spices. Letters in Applied Microbiology, 39: 401–406
●Vinatoru, M. (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonound Sonochemistry, 8(3): 303-313.
●Weerakkody, N.S., Caffin, N., Lambert,L.K., Turner, M.S. and A Dykes, G. (2011). Synergistic antimicrobial activity of galangal (Alpiniagalanga), rosemary (Rosmarinusofficinalis) and lemon iron bark (Eucalyptus staigerana) extracts. Journal of the Science of Food and Agriculture, 91: 461–468.
●Yoon, K.Y., Byeon, J.H., Park, J.H. and Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. International Biodeterioration and Biodegradation, 47: 23-26.
●Zhang, L., Ding, Y., Povey, M. and York, D. (2008). ZnO nanofluids - a potential antibacterial agent. Progress in Natural Science, 18(8): 939-944.