• Home
  • Rogozhin Evgenii
  • OpenAccess
    • List of Articles Rogozhin Evgenii

      • Open Access Article

        1 - Seismic study and spatial observations of a & b – values for the different earthquake hazard zones of India
        Narayanakumar Somasundaram Surendra Nadh Somala Evgenii Rogozhin Svetlana Rodina
        This paper study the recent seismicity in Earthquake hazard zones in India. A large historical earthquake event catalog to cover the period of 1900-2018, the parameters date, time, latitude, longitude, depth and magnitude has been used to calculating frequency-magnitude More
        This paper study the recent seismicity in Earthquake hazard zones in India. A large historical earthquake event catalog to cover the period of 1900-2018, the parameters date, time, latitude, longitude, depth and magnitude has been used to calculating frequency-magnitude distribution (b-value) of seismic hazard zones in India. To convert different magnitude scales into a single moment magnitude scale, the general orthogonal regression relation is used. Gamma distribution used for variable corrections also de-clustering method has used for removal of any non-Poisson distribution. The Indian seismic hazard zones are divided into five major seismic sources zones. The seismicity is characterized by Gutenberg-Richter relation. The parameter ‘b’ of FMD and relationship have been determined for these five seismic zones having different vulnerability environment. The ‘b’ values ranges between 0.43 to 1.16. The difference between the b parameters and seismic hazard level from seismic zones II to V considered for the study of high seismo-tectonic complexity and crustal heterogeneity, the parameter ‘a’ value changes accordingly the seismicity of the regions. The lowest b-values found in seismic zone II. The highest FMD b-value has been found in the seismic zone IV. Such high seismicity b-values may be associated with high heterogeneity. In this high b-value predict the low strength in the crust as well as seismic instabilities of that zone. These observations recommend not suggesting the location of important projects like atomic power stations, hydroelectric power stations, neutrino observatory projects, satellite town projects. Manuscript profile
      • Open Access Article

        2 - Seismic risk assessment for central Indo-Gangetic Plains, India
        Raghucharan Manikya Surendra Somala Olga Erteleva Rogozhin Evgenii
        Seismic hazard for the central indo-gangetic plains (CIGP) is either available in terms of generalized hazard spectrum as per IS 1893:2016 or in terms of only Peak Ground Acceleration (PGA) at the city level. Also, the study region falls in the seismic gap region, which More
        Seismic hazard for the central indo-gangetic plains (CIGP) is either available in terms of generalized hazard spectrum as per IS 1893:2016 or in terms of only Peak Ground Acceleration (PGA) at the city level. Also, the study region falls in the seismic gap region, which has a potential for an earthquake of Mw>8.0. Hence, in this study, the seismic risk is assessed for the first time at the district level in the seismically critical region of India, the CIGP. In addition, the relative contribution of parametric and model uncertainties is also quantified from sensitivity analysis. Seismic risk results reveal that mud mortar bricks with temporary roofing (MMB) have the highest collapse probability of ~0.6. Further, brick walls with stone roof (BSR) and brick walls with metal sheet roof (BMS) also have high extensive and collapse damage compared to other building groups. These building types need immediate retrofitting / replacement for effective disaster mitigation. Also, geo-unit Allahabad, even though lying in zone II as per IS 1893:2016, has the most number of homeless and uninhabitable dwellings. Further, for a future earthquake of magnitude in the range of Mw 7.5 and 8.5, the expected financial loss might vary from 60 to 150 billion dollars, and the human loss might vary between 0.8 and 2.8 lakhs, respectively. Finally, results from this study will create awareness in the general public, policymakers, and structural engineers for taking up necessary mitigation measures on the existing buildings of CIGP for better preparedness from a future strong earthquake. Manuscript profile