پهنهبندی خطرپذیری آبخوان کارستی دشت الشتر با مدل کپ
محورهای موضوعی : اقلیم شناسیمحمد علی زنگنه اسدی 1 * , تیمور کولیوند 2 , عیسی جوکار سرهنگی 3
1 - گروه ژئومورفولوژی، دانشکده جغرافیا، دانشگاه حکیم سبزواری، سبزوار، ایران
2 - دانشجوی دکتری گروه جغرافیای طبیعی، گرایش مدیریت مخاطرات ژئو مورفولوژی، دانشگاه حکیم سبزواری، سبزوار، ایران
3 - دانشیار گروه جغرافیا طبیعی، ژئو مورفولوژی، دانشگاه مازندران، مازندران، ایران
کلید واژه: دشت الشتر, پهنهبندی خطرپذیری, آبخوان کارست, مدل کپ,
چکیده مقاله :
آبخوان کارستی در مناطق نیمهخشک نقش بسیار حیاتی در زندگی مردم دارد. از اینرو شناخت پتانسیل آلودگی آبخوانها و قابلیت آسیبپذیری آنها در بخشهای مختلف از اهمیت بسزایی برخوردار است. منطقه غرب ایران به دلیل گسترش رشته کوه اغلب کربناته زاگرس دارای آبخوانهای کارستی متعددی است که ازنظر شرایط زیستمحیطی و فعالیتهای گسترده انسانی در معرض آلودگی قرار دارند. هدف پژوهش برآورد میزان و تهیه نقشه آسیبپذیری آبخوان کارستی دشت الشتر واقع در استان لرستان در برابر انتشار آلودگی با مدل کپ (COP) است. این مد ل با استفاده از سه عامل، لایهپوشاننده (O)، غلظتجریان(C)و رژیمبارش (P) به ارزیابی آسیبپذیری منابع آب کارست در برابر آلودگی میپردازد. نتایج پژوهش نشان میدهد که به ترتیب 14/19، 76/28، 01/35 و 09/17 درصد از مساحت منطقه در پهنه آسیبپذیری خیلی کم، کم، متوسط و بالا واقع شده که حاکی از آسیبپذیری تقریباً پایین این آبخوان کارستی نسبت به آلودگی است. یافتههای پژوهش نشاندهنده این امر است که به ترتیب اهمیت عامل لایه پوشاننده، عامل رژیم بارش و عامل غلظت جریان در آلودگی آبخوان الشتر نقش دارند. به دلیل وسعت کم کارستهای کاملاً توسعهیافته و شیب زیاد مناطق دارای کارست توسعهیافته، نقش عامل غلظت جریان در آلایندگی آبخوان الشتر کمتر است و به علت روند خشکسالیهای دهههای اخیر و نیز تغییر نوع بارش از برف به باران رگباری که آب ماندگاری و درنتیجه نفوذ کمتری را در حوضه کارستی الشتر دارد، از اهمیت رژیم بارشی در آسیبپذیری آبخوان الشتر کاسته است. در نهایت عامل لایه پوشاننده به دلیل نفوذپذیری بالای دشت آبرفتی الشتر زمینه آلودگی آبخوان را فراهم کرده است. بهطورکلی در منطقه موردمطالعه به ترتیب C،P و O بیشترین نقش را در میزان آسیبپذیری منطقه دارا میباشند.
Karst aquifers in semi-arid regions play a vital role in people's lives. Therefore, recognizing the pollution potential of aquifers and their vulnerability in different sectors is very important. The western region of Iran, due to the expansion of the Zagros carbonate mountain range, has numerous karstic aquifers that are exposed to pollution in terms of environmental conditions and extensive human activities. The purpose of this study is to estimate the vulnerability map of Aleshtar plain karst aquifer located in Lorestan province against COP pollution. This model evaluates the vulnerability of karst water sources to pollution using three factors, cover layer (O), flow concentration (C) and precipitation regime (P). The results show that 19.14, 28.76, 35.01 and 17.09% of the area are located in very low, low, medium and high vulnerability zones, respectively, which indicates the almost low vulnerability of this karst aquifer compared to It is pollution. Findings indicate that the importance of the overlay factor, precipitation regime factor and flow concentration factor in the pollution of Aleshtar aquifer, respectively. Due to the small area of fully developed karsts and the high slope of areas with developed karst, the role of flow concentration factor in pollution of Aleshtar aquifer is less and due to the drought trend of recent decades and the change of precipitation from snow to rain showers that water retention and therefore less penetration In the karst basin of Alshtar, the importance of the rainfall regime in the vulnerability of the Alshtar aquifer has decreased. Finally, due to the high permeability of the alluvial plain of Aleshtar, the cover layer has provided the ground for aquifer pollution. In general, in the study area, C, P and O, respectively, have the most role in the vulnerability of the area.
1- درگاه اینترنتی مرکز آمار ایران (1400): www.amar.org.ir، سرشماری نفوس و مسکن، (1395)
2- زنگنه اسدی محمدعلی: بقایی نژاد، نادیا: غلام پور، شیرین: بهشتی قله زو، علی (1394): تهیۀ نقشه آسیبپذیری آلودگی آبخوان بقیع خراسان رضوی با کاربرد دو روش COP و PRIK، استفاده از سنجش از دور و GIS، فصلنامه علمی پژوهشی مهندسی منابع آب، دوره هفتم، شماره 27 زمستان 1394، صص 50-43.
3- سازمان آب منطقهای استان لرستان (1398): گزارش هیدرولوژی دشت الشتر.
4- سازمان هواشناسی کشور (1399): دادههای هواشناسی ایستگاه سینوپتیک استان لرستان و شهرستان الشتر، سالهای 2021-1994 میلادی.
5- صفاری، امیر: کیانی، طیبه: زنگنه تبار، ساسان (1398): برسی عوامل مؤثر در توسعهیافتگی و پهنهبندی کارست کوهستان خورین با استفاده از منطق فازی، نشریه علمی پژوهشی تحقیقات کاربردی علوم جغرافیایی، سال 19، شماره 55، صص 36-23.
6- کاشفی، مهدی: انتظاری، مژگان: جعفری اقدام، مریم، (1399): ارزیابی آسیبپذیری کارست سطحی آبخوانهای کارستی شش پیر و برغان با استفاده از منطق فازی، فصلنامه علمی پژوهشی پژوهشهای ژئو مورفولوژی کمی، سال هشتم، شماره 4، بهار (1399)، صص 62-47.
7- مهندسین مشاور ژرفاب پایش (1382): مطالعات نیمه تفصیلی آبهای زیرزمینی محدوده مطالعاتی الشتر، جلد اول، گزارش مطالعات هواشناسی و هیدرولوژی.
8- مهندسین مشاور سنگاب زاگرس (1390): گزارش توجیهی تخصیص منابع آب محدوده مطالعاتی الشتر کد 2210، شرکت سهامی آب منطقهای لرستان، وزارت نیرو.
9- مهندسین مشاور رستاب (1368): مطالعات طرح تأمین آب و شبکه آبیاری و زهکشی دشت الشتر، استان لرستان، جلد دوم منابع خاک و زمینشناسی.
10- یمانی، مجتبی، شمسیپور، علیاکبر، جعفری اقدم، مریم، باقری سیدشکری، سجاد (1392): برسی عوامل مؤثر در توسعهیافتگی و پهنهبندی کارست حوضه چله با استفاده از منطق فازی و AHP، استان کرمانشاه، فصلنامه علمی پژوهشی علوم زمین، شماره 88، سال بیست و دوم، صص 66-57.
11- Adams, B.And Foster, S.S.D. (1992): Land-Surface Zoning For Groundwater Protection. Journal Of The Institution Of Water And Environmental Management,6, 312–320.
12- Afrasiabian, A. (2007): The Importance Of Protection And Management Of Karst Water As Drinking Water Resources In Iran. Environ Geol, 52:673–677.
13- Andreo, B. Goldscheider, N. Vadillo, I. Mar Vias, J. Neukum, C. Sinreich, M. Jime´Nez, P. Brechenmacher, J. Carrasco, F. Ho¨ Tzl, H. Jesuperles, M. And Zwahlen, F. (2006): Karst Groundwater Protection: First Application Of A Pan-European Approach To Vulnerability, Hazard And Risk Mapping In Thesierra De Lı´Bar (Southern Spain). Science Of The Total Environment, 357: 54– 73.
14- Bakalowicz, M. (1995): La Zone D’infiltration Des Aquifères Karstiques. Méthodesd’étude. Structure Etfonctionnement. Hydrogeology 4, 3–21.
15- Chak Ho, H. Mylroiem J. Infante, L. (2017): Environmental Earth Sciences, Vol. 71, Issue 3, Pp 1369–1377, Risk Assessment Of Water Inrush In Karst Tunnels Based On Two-Class Fuzzy Comprehensive Evaluation Method.
16- Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Et Al. Main Concepts Of The European Approach For (Karst) Groundwater Vulnerability Assessment And Mapping. Hydrogeolj (2002); 10:340–355.
17- De Jong, C. Cappy, S. And Funk, D. (2008): A Transdisciplinary Analysis Of Water Problems In The Mountainous Karst Areas Of Morocco. Engineering Geology 99, 228–238.
18- Dimitriou, E. Karaouzas, I. Sarantakos, K. Zacarias, I. Bogdanos, K. Diapo Ulis, A. (2008): Groundwater Risk Assessment At A Heavily Industrialized Catchment And The Impacts On A Peri-Urban Wetland. Journal Of Environmental Management 88 (3), 526e538.
19- Ducci, D. (2007): Intrinsic Vulnerability Of The Alburni Karst System (Southern Italy). In: Parise, M. Gunn, J. (Eds.), Natural And Anthropogenic Hazards In Karst Area: Recognition, Analysis And Mitigation, Vol. 279. Geological Society, London, Special Publications, Pp. 137-151.
20- European Commission, (1995): Hydrogeological Aspects Of Groundwater Protection In Karstic Areas. Report Eur 16547 En, Brussels, 446 P.
Ford, D.C. Williams, P.W. (2007): Karst Hydrogeology And Geomorphology. Wiley Chi Chester, United Kingdom. 562 P.
21- Gondwe, B. Alonso, G. Gottwein,G. (2011): The Influence Of Conceptual Model Uncertainty On Management Decisions For A Groundwater-Dependent Ecosystem In Karst. Journal Of Hydrology 400, 24–40.
22- Iqbal, J. Pathak, G. Gorai, A. (2014): Development Of Hierarchical Fuzzy Model For Groundwater Vulnerability To Pollution Assessment, Arabian Journal Of Geosciences.
23- Kattaa, B. Al-Fares, W. Al Charideh, A. (2010): Groundwater Vulnerability Assessment For The Banyas Catchment Of The Syrian Coastal Area Using Gis And The Riske Method. Journal Of Environmental Management 91, 1103–1110.
24- Kiros, M. Zhou, Y. (2006): Gis-Based Vulnerability Assessment And Mapping For Theprotection Of The Dire Dawa Groundwater Basin, Ethiopia. In: 34th Congress Ofinternational Association Of Hydrogeologists, Beijing, P.R. China.
25- Krause, S. Heathwaite, A.L. Miller, F. Hulme, P. Crowe, A. (2011): Groundwaterdependent Wetlands In The Uk And Ireland: Controls, Functioning And Assessing The Likelihood Of Damage From Human Activities. Water Resour. Manage. 21, 2015–2025.
26- Leyland, R. (2008): Vulnerability Mapping In Karst Terrains, Exemplified In The Wider Cradle Of Humankind World Heritage Site, Master Thesis.
27- Mudarra, M. Andreo, B. (2011): Relative Importance Of The Saturated And The Unsaturated Zones In The Hydrogeological Functioning Of Karst Aquifers: The Case Of Alta Cadena (Southern Spain). Journal Of Hydrology 397, 263–280.
28- Münch, Z. Conrad, J. (2007): Remote Sensing And Gis Based Determination Of Groundwater Dependent Ecosystems In The Western Cape, South Africa, Hydrogeol. J. 15, 19–28.
29- Plan, L. Decker, K. Faber, R. Wagreich, M. Grasemann, B. (2008): Karst Morphology And Groundwater Vulnerability Of High Alpine Karst Plateaus. Environmental Geology.
30- Ravbar, N. (2007): The Protection Of Karst Waters: A Comprehensive Slovene Approach To Vulnerability And Contamination Risk Mapping. Zrc Publishing, Ljubljana, 254 P.
31- Vías, J. Andreo, B, Ravbar, N. Hötzl, H. (2010): Mapping The Vulnerability Of Groundwater To The Contamination Of Four Carbonate Aquifers In Europe. Journal Of Environmental Management 91, 1500e1510.
32- White, W.B. (1988): Geomorphology And Hydrology Of Karst Terrains. Oxford Univ. Press, New York. 464 P.
_||_