Solution of some irregular functional equations and their stability
Subject Areas : Functional analysisY. Sayyari 1 , M. Dehghanian 2 , Sh. Nasiri 3
1 - Department of Mathematics, Sirjan University of Technology, P. O. Box 78137-33385, Sirjan, Iran
2 - Department of Mathematics, Sirjan University of Technology, P. O. Box 78137-33385, Sirjan, Iran
3 - Department of Computer Engineering, Sirjan University of Technology P. O. Box 78137-33385, Sirjan, Iran
Keywords: Hyers-Ulam stability, Additive functional equation, unital algebra,
Abstract :
In this note, we study the following functional equations:\begin{align*}&L(L(p ,r)+L(q,r)+p + q ,r)+L(L( p, r)+ p , r)+L(q, r )=0,\\&L(L( p , r )+ p + q+e, r )+L( p, r)=L( p + q , r )+ p L(q , r)\end{align*}and $L( p , q )=L(\zeta p , q), \vert \zeta\vert <1$,without any regularity assumption for all $ p , q , r \in A$, where $L:A^2\rightarrow A$ is defined by $L( p , q ):=g( p + q )-g( p )-g( q )$ for all $ p , q\in A$. Also, we find general solutions of the above functional equations on algebras, unital algebras and real numbers, respectively. Finally, we investigate the stability of those functional equations in algebras and unital algebras, respectively.
[1] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sin. 22 (2006), 1789-1796.
[2] M. Dehghanian, S. M. S. Modarres, Ternary γ-homomorphisms and ternary γ-derivations on ternary semi-groups, J. Inequal. Appl. (2012), 2012:34.
[3] M. Dehghanian, S. M. S. Modarres, C. Park, D. Y. Shin, C∗-Ternary 3-derivations on C∗-ternary algebras, J. Inequal. Appl. (2013), 2013:124.
[4] M. Dehghanian, C. Park, C∗-Ternary 3-homomorphisms on C∗-ternary algebras, Results. Math. 66 (2014), 87-98.
[5] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[6] Y. Guan, M. Feckan, J. Wang, Periodic solutions and HyersUlam stability of atmospheric Ekman flows, Discrete Contin. Dyn. Syst. 41 (3) (2021), 1157-1176.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[8] D. H. Hyers, G .Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[9] G. Isac, Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory. 72 (1993), 131-137.
[10] A. Najati, J. R. Lee, C. Park, Th. M. Rassias, On the stability of a Cauchy type functional equation, Demonstr. Math. 51 (2018), 323-331.
[11] C. Park, An additive (α,β)-functional equation and linear mappings in Banach spaces, J. Fixed Point Theory Appl. 18 (2016), 495-504.
[12] C. Park, The stability of an additive (ρ1,ρ2) -functional inequality in Banach spaces, J. Math. Inequal. 13 (1) (2019), 95-104.
[13] C. Park, H. Wee, Homomorphisms between Poisson Banach algebras and Poisson brackets, Honam Math. J. 26 (2004), 61-75.
[14] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (2) (1978), 297-300.
[15] Y. Sayyari, M. Dehghanian, C. Park, J. R. Lee, Stability of hyper homomorphisms and hyper derivations in complex Banach algebras, AIMS. 7 (6) (2022), 10700-10710.
[16] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publication, New York, 1960.