Hybrid linesearch algorithm for pseudomonotone equilibrium problem and fixed points of Bregman quasi asymptotically nonexpansive multivalued mappings
Subject Areas : Fixed point theory
1 - Department of Science and Technology Education, Bayero University, Kano, Nigeria
2 - Department of Mathematical Sciences, Bayero University, Kano, Nigeria
Keywords: Legendre function, strong convergence, Bregman-quasi-asymptotically multivalued nonexpansive mappings, pseudomonotone equilibrium problem,
Abstract :
In this paper, we introduce a linesearch algorithm for solving fixed points of Bregman quasi asymptotically nonexpansive multivalued mappings and pseudomonotone equilibrium problem in reflexive Banach space. Using the linesearch method, we prove a strong convergence of the iterative scheme to a common point in the set of solutions of some equilibrium problem and common fixed point of the finite family of Bregman quasi asymptotically nonexpansive multivalued mappings with out imposing Bregman Lipschitz condition on the bifunction $g$ as used by many authors in the extragradient method. Our results improve and generalize many recent results in the literature.
[1] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, In theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes Pure Appl. Math. (1996), 15-50.
[2] A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, 1993.
[3] P. N. Anh, A hybrid extragradient method extented to fixed point problems and equilibrium problems, Optimization. 62 (2) (2013), 21-283.
[4] J. P. Aubin, Optima and Equilibria, Springer, New York, 1998.
[5] H. H. Bauschke, J. M. Borwein, P. L. Combettes, Essential smoothness, essential strict convexity and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001), 615-647.
[6] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Mathematics Students. 63 (1994), 123-145.
[7] J. F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, USA, 2000.
[8] L. M. Bregman, The relation method of finding the common points of convex sets and its application to solution of problems in convex programming, USSR, Comput. Math. Math. Phys. 7 (1967), 200-217.
[9] D. Butnariu, A. N. Lusem, Totally Convex Functions for Fixed Point Computation and Finite Dimensional Optimization, Kluwer Academics Publishers, Dordrecht, 2000.
[10] D. Butnariu, E. Resmerita, Bregman distance, totally convex functions and method for solving operator equation in Banach spaces, Abst. Appl. Anal. (2006), 2006:84919.
[11] D. Butnariu, A. N. Iusem, C. Zlinescu, On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal. 10 (2003), 35-61.
[12] C. Byrne, A unified treatment of some iteratve algorithms in signal processing and image reconstruction, Inverse Problems. 20 (2004), 103-120.
[13] L. C. Ceng, J. C. Yao, A hybrid Iterative Scheme for mixed equilibrium problem and fixed point problem, J. Comput. Appl. Math. 214 (2008), 186-201.
[14] Y. Censor, A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory. Appl. 34 (1981), 321-358.
[15] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
[16] V. H. Dang, Weak and strong convergence of subgradient extragradient methods for pseudomonotone equilibrium problems, Commun. Korean Math. Soc. 31 (2016), 879-893.
[17] P. Daniele, F. Giannessi, A.Maugeri, Equilibrium Problems and Variational Models, Kluwer Academic, Dordrecht, The Netherlands, 2003.
[18] G. Z. Eskandani, M. Raeisi, T. M. Rassias, A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance, J. Fixed Point Theory Appl. (2018), 20:132.
[19] D. V. Hieu, Common solutions to pseudomonotone equilibrium problems, Bull. Iran. Math. Soc. 42 (2016), 1207-1219.
[20] D. V. Hieu, Convergence analysis of a new algorithm for strongly pseudomonotone equilibrium problems, Numer. Algorith. 77 (4) (2018), 983-1001.
[21] Z. Jouymandi, F. Moradlou, Extragradient and linesearch algorithms for solving equilibrium problems and fixed point problems in Banach spaces, arXiv:1606.01615[Math].
[22] Y. Li, H. Liu, Srong convergence of hybrid Halpern iteration for Bregman totally quasi-asymptotically nonexpansive multivalued mappings in rreflexive Banach spaces with application, Fixed Point Theory Appl. (2014), 2014:186.
[23] V. Martin-Marquez, S. Reich, S. Sabach, Iterative methods for approximating fixed points of Bregman nonexpansive operators, DCDS. 6 (2013), 1043-1063.
[24] E. Naraghirad, J. C. Yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. (2013), 2013:141.
[25] J. W. Peng, Iterative algorithms for mixed equilibriums, strict pseudocontractions and monotone mappings, J. Optim. Theory. Appl. 144 (2010), 107-119.
[26] N. Petrot, K. Wattanawitoon, P. Kumam, A hybrid projection method for generalized mixed equilibrium problems and fixed point problems in Banach spaces, Nonlinear Anal. Hybrid Syst. 4 (2010), 631-643.
[27] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer, Berlin, Germany, 1993.
[28] X. Qin, Y. J. Cho, S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Math. Appl. 225 (2009), 20-30.
[29] S. Reich, A weak convergence theorem for the alternating method with Bregman distance: Theory and Application of Nonlinear Operators, Marcel Dekker, New York, (1996), 313-318.
[30] S. Reich, S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex. Anal. 10 (2009), 471-485.
[31] S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010), 22-44.
[32] J. J. Strodiot, V. H. Nguyen, P. T. Vuong, Stong convergence of two hybrid extragradient methods for solving equilibrium problems and fixed point problems, Vietnam J. Math. 40 (2) (2013), 371-389.
[33] A. Tada, W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and equilibrium problem, J. Optim. Theory. Appl. 133 (2007), 359-370.
[34] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokahama Publishers, Yokahama, 2000.
[35] S. Takahashi, W. Takahashi, Viscosity Approximation methods for Equilibrium problems and fixed point problems in Hilbert Spaces, J. Math. Anal. Appl. 331 (2007), 506-515.
[36] W. Takahashi, K. Zembayash, Strong convergence theorem by new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), 2008:528476.
[37] J. V. Tiel, Convex Analysis: An Introduction, Wiley, New York, 1984.
[38] Q. D. Tran, L. D. Muu, H. V. Nguyen, Extragradient algorithms extended to equilibrium problems, J. Optim. 57 (2008), 749-776.
[39] G. C. Ugwunnadi, B. Ali, I. Idris, M. S. Minjibir, Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl. (2014), 2014:231.
[40] Q. Yuan, M. J. Shang, Ky Fan inequalities, ϕ-distances, and generalizesd asymptotically quasi-ϕ-nonexpansive mappings, J. Fixed Point Theory. (2013), 2013:4.
[41] C. Zlinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, USA, 2002.
[42] Q. N. Zhang, H. L. Wu, Hybrid algorithsms for equilibrium and common fixed point problems with applications, J. Inequal. Appl. (2014), 2014:221.