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Abstract. In this paper, we introduce a linesearch algorithm for solving fixed points of Breg-
man quasi asymptotically nonexpansive multivalued mappings and pseudomonotone equilib-
rium problem in reflexive Banach space. Using the linesearch method, we prove a strong
convergence of the iterative scheme to a common point in the set of solutions of some equilib-
rium problem and common fixed point of the finite family of Bregman quasi asymptotically
nonexpansive multivalued mappings with out imposing Bregman Lipschitz condition on the
bifunction g as used by many authors in the extragradient method. Our results improve and
generalize many recent results in the literature.
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1. Introduction

Let E be a real Banach space, E∗ be the dual of E and C be a nonempty closed
and convex subset of E. Recall that a map T : C → C is said to be nonexpansive if
∥Tx− Ty∥ ⩽ ∥x− y∥ for all x, y ∈ C. T : C → C is called asymptotically nonexpansive
if there exists {µn} ⊂ [0,+∞) such that µn → 0 as n → +∞ and ∥Tnx − Tny∥ ⩽
(1 + µn)∥x − y∥ for all x, y ∈ C. Fixed point theory for nonlinear mappings find its
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application in many areas such as theory of differential equation, signal processing and
image recovery, see for example Byrne [12].

A bifunction g : C × C → R is said to be an equilibrium bifunction if g(x, x) = 0 for
all x ∈ C. The equilibrium problem with respect to g and C is to find z∗ ∈ C such that

g(z∗, y) ⩾ 0 for all y ∈ C. (1)

The set of solution of equilibrium problem is denoted by EP (g), i.e.

EP (g) = {z∗ ∈ C : g(z∗, y) ⩾ 0 for all y ∈ C}.

Equilibrium problem (1) was introduced by Blum and Oettli [6]. Various problems in
linear and nonlinear programming, physics, engineering, economics, transportation, etc
can be reformulated as equilibrium problems, see for example [6, 17, 26, 40, 42]. The
problem of finding a common points of the set of equilibrium and the set of fixed points
of nonlinear mappings have an attractive subject of researches, and many methods have
been developed and investigated for solving this problem. Tada and Takahashi [33] intro-
duced the following algorithm for equilibrium problem and fixed point of nonexpansive
mapping in real a Hilbert space as follows:

x0 ∈ H chosen arbitrarily,
zn ∈ K such that,
f(zn, y) +

1
rn
⟨y − zn, zn − xn⟩ ⩾ 0 for all y ∈ K,

xn+1 = (1− αn)xn + αnSzn, n ⩾ 0,

(2)

where K is a nonempty closed convex subset of H, S is nonexpansive map, {αn} ⊂ [a, b]
for some a, b ∈ (0, 1) and {rn} ⊂ (0,+∞) satisfies lim inf

n→+∞
rn > 0. Other results involving

fixed point and equilibrium problems include for example [13, 25, 28, 35, 36, 40, 42] and
the references contained therein. From algorithm (2) to compute zn at each step, one
needs to solve the following regularized subproblem:

zn ∈ K such that g(zn, y) +
1

rn
⟨y − zn, zn − xn⟩ ⩾ 0 for all y ∈ K. (3)

Observe that if g is monotone, the subproblem (3) is strongly convex problem and its
unique solution exists. However if the monotone bifunction g is replaced with pseu-
domonotone bifunction, then the subproblem (3) is not strongly monotone and therefore
the unique solution of (3) may not be guaranteed, see for example Dang [16]. Moti-
vated by this, several algorithms for pseudomonotone equilibrium problems have been
investigated. Anh [3] introduced extragradient method for pseudomonotone equilibrium
problems and fixed points of nonexpansive mappings in a real Hilbert spaceH. He studied
the following iterative algorithm:

x0 ∈ K arbitrarily,
yn = argmin{λng(xn, y) +

1
2∥y − xn∥2 : y ∈ K},

un = argmin{λng(yn, y) +
1
2∥y − xn∥2 : y ∈ K},

xn+1 = αnx0 + (1− αn)Sun, n ⩾ 0,

(4)

where {αn} and {λn} are real sequences satisfying some conditions. Strong convergence
the iterative scheme (4) was obtained by imposing Lipschitz-type condition on the bi-
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function g, i.e.

g(x, y) + g(y, x) ⩾ g(x, z)− c1∥x− y∥2 − c2∥y − x∥2 for all x, y, z ∈ C,

where c1 and c2 are constants. Various authors implemented extragradient method to
solve pseudomonotone equilibrium problems (for example, see [19–21, 32] and the ref-
erences contained therein). Recently, Eskandani et al. [18] introduced a hybrid extra-
gradient method for solving pseudomonotone equilibrium problems and fixed points of
multi-valued Bregman relatively nonexpansive mappings in reflexive Banach spaces as
follows: 

x1 ∈ C arbitrarily,
wi
n = argmin{λngi(xn, y) +Df (w, xn) : w ∈ C} i = 1, 2, . . . , N,

zin = argmin{λngi(w
i
n, z) +Df (z, xn) : z ∈ C} i = 1, 2, . . . , N,

in ∈ Argmin{Df (z
i
n, xn) i = 1, 2, . . . , N} z̄n := zinn ,

yn = ∇f∗(βn,0∇f(z̄n) +
∑M

r=1 βn,r∇f(zn,r)), zn,r ∈ Trz̄n,

xn+1 =
←−

ProjfC (∇f∗(αn∇f(un) + (1− αn)∇f(yn)))

(5)

The authors proved strong convergence of the iterative scheme (5) to common point in
the set of solutions of finite family of pseudomonotone equilibrium problems and set of
fixed points of finite family of multi-valued Bregman relatively nonexpansive mappings
by imposing Bregman Lipschitz-type condition on the bifunctions gi:

gi(x, y) + gi(y, x) ⩾ gi(x, z)− c1Df (x, y)− c2Df (y, x) for all x, y, z ∈ C.

However the Bregman Lipschitz-type condition on gi is not easy to obtain since the
two unkown constants c1, c2 are difficult to approximate. Inspired and motivated by the
work of Eskandani et al., in this paper, we propose and study a linesearch algorithm for
finding solution in the set of pseudomonotone equilibrium problem and set of fixed points
of finite family of Bregman-quasi-asymptotically nonexpansive multi-valued mapping.
Strong convergence of the iterative scheme is established with out Bregman Lipschitz-
type condition on the bifunctions gi.

2. Preliminaries

In this paper, we assume f : E → (−∞,+∞] to be a proper and convex function,
i.e. domf ̸= ∅ and f(αx + (1 − α)y) ⩽ αf(x) + (1 − α)f(y) forall x, y ∈ E, α ∈ (0, 1),
where dom f = {x ∈ E : f(x) < +∞}. The Fenchel conjugate of f is a function
f∗ : E∗ → (−∞,+∞] defined by

f∗(ζ) = sup{⟨x, ζ⟩ − f(x) : x ∈ E}. (6)

From (6), we can easily obtain f∗(ζ)+f(x) ⩾ ⟨x, ζ⟩ for every x ∈ E and ζ ∈ E∗ which is
called Fenchel inequality. The subdifferential of f is the mapping ∂f : E → 2E

∗
defined

by

∂f(x) = {ζ ∈ E∗ : f(y) ⩾ f(x) + ⟨y − x, ζ⟩ for all y ∈ E} for all x ∈ E.
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It is known that if the function f is proper, lower semicontinuous and convex, then for
each x ∈ dom f the subdifferential ∂f(x) is a nonempty closed convex set. Moreover
ζ ∈ ∂f(x) if and only if f(x)+f∗(ζ) = ⟨x, ζ⟩ for all x ∈ E, see [5]. Furthermore, see for
example [34], if f : E → (−∞,+∞] is a proper, convex and lower semicontinuous func-
tion, then f∗ : E∗ → (−∞,+∞] is also proper, convex and weak∗ lower semicontinuous
function. The function f is called coercive if lim

∥x∥→+∞
f(x) = +∞ and it is called strongly

coercive if lim
∥x∥→+∞

f(x)
∥x∥ = +∞.

Let x ∈ int domf and y ∈ E. The right-hand derivative of f at x in the direction y is
defined as

f◦(x, y) = lim
t→0

f(x+ ty)− f(x)

t
. (7)

The function f is said to have Gâteaux derivative at x if lim
t→0

f(x+ty)−f(x)
t exists for all

y ∈ E. In this case the gradient ∇f of f at x is bounded linear functional defined by
f◦(x, y) = ⟨y,∇f(x)⟩. f is said to be Gâteaux differentiable if its Gâteaux derivative
exists at each x ∈ int domf . f is said to be Fréchet differentiable at x if the limit in (7)
is attained uniformly in ∥y∥ = 1. f is said to be uniformly Fréchet differentiable on a
subset C of E when the limit in (7) is attained uniformly for every x ∈ C and ∥y∥ = 1.
It is well known that (see for example [2]), if f is uniformly Fréchet differentiable on
bounded subset of E, then f is uniformly continuous on bounded set of E.

The function f is called essentially smooth if ∂f is both single-valued and bounded
on its domain. When f is strictly convex on every convex subset of dom ∂f and (∂f)−1

is locally bounded on its domain, f is called essentially strictly convex. f is said to
be Legendre if it is both essentially smooth and essentially strictly convex. We know
that if the subdifferential of f ∂f is single-valued, then it coincides with its gradient i.e.
∂f = ∇f (see for example [27]).

For a Legendre function f , the following results are well known, (see for example [5, 7])

(i) f is Legendre if and only if f∗ is Legendre;
(ii) (∂f)−1 = ∂f∗;
(iii) f is essentially smooth if and only if f∗ is essentially strictly convex;
(iv) If f is Legendre, then ∇f is a bijection satisfying ∇f = (∇f∗)−1, ran∇f = dom∇f∗ =

int domf∗ and ran∇f∗ = dom∇f = int domf .

In case E is smooth and strictly convex, the function f(x) = 1
p∥x∥

p, where p ∈ (1,+∞)

is Legendre (see for example [39]).
For a proper convex and Gâteaux differentiable function f : E → (−∞,+∞] ([8, 14]),

the Bregman distance corresponding to f between x and y is the function Df : dom f ×
int dom f → R defined by

Df (x, y) = f(x)− f(y)− ⟨x− y,∇f(y)⟩ for all x ∈ dom f, y ∈ int dom f. (8)

It follows from (8) that Df (x, y) ⩾ 0 for every x ∈ dom f, y ∈ int dom f and if f is
strictly convex, then Df (x, y) = 0 if and only if x = y (see, [9]). Moreover, Bregman
distance satisfies the three point identity:

Df (x, y) +Df (y, z) = Df (x, z) + ⟨x− y,∇f(z)−∇f(y)⟩ (9)



M. H. Harbau and B. Ali / J. Linear. Topological. Algebra. 10(02) (2021) 153-177. 157

for all x ∈ dom f and y, z ∈ int dom f .
Let C ⊂ int dom f , then the Bregman projection with respect to f of x ∈ int dom f

onto the nonempty closed convex subset C of E is the unique vector P f
C(x) ∈ C satisfying

Df (P
f
C(x), x) = inf{Df (y, x) : y ∈ C}.

Remark 1 When E is smooth and strictly convex Banach space and f(x) = ∥x∥2 for
every x ∈ E, then we have ∇f(x) = 2J(x) for all x ∈ E and hence

Df (x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 = ϕ(x, y) for all x, y ∈ E,

where J is the normalized duality mapping defined by J(x) = {ζ ∈ E∗ : ⟨x, ζ⟩ = ∥x∥2 =
∥ζ∥2} and ϕ is the Lyapunov functional introduced by Alber [1]. Therefore, the Bregman

projection P f
C(x) reduces to the generalized projection ΠC(x) which is defined by

ϕ(ΠC(x), x) = inf{ϕ(y, x) : y ∈ C}.

If E = H a Hilbert space, then the Bregman projection P f
C(x) reduces to the metric

projection PC(x) of H onto C.

Let Br = {h ∈ E : ∥h∥ ⩽ r} for all r > 0. The function f is bounded if f(Br) is
bounded for all r > 0 and f is uniformly convex on bounded subsets of E [41] if the
function ρr : [0,+∞) → [0,+∞) defined by

ρr(t) = inf
x,y∈Br, ∥x−y∥=t, α∈(0,1)

αf(x) + (1− α)f(y)− f(αx+ (1− α)y)

α(1− α)
,

satisfies ρr(t) > 0 for all r, t > 0, where ρr is called the gauge of uniform convexity of f .
The gauge of uniform smoothness of f is the function σr : [0,+∞) → [0,+∞) defined
by

σr(t) = sup
x∈Br,y∈SE ,α∈(0,1)

αf(x+ (1− α)ty) + (1− α)f(x− tαy)− f(x)

α(1− α)
,

where SE = {h ∈ E : ∥h∥ = 1}. The function f is said to be uniformly smooth on E if
σr(t) > 0 for all r, t > 0.

The modulus of total convexity of f at x ∈int domf is the function vf (x, .) : [0,+∞) →
[0,+∞) defined by

vf (x, t) = inf{Df (y, x) : y ∈ domf, ∥y − x∥ = t}.

The function f is totally convex at x if vf (x, t) > 0 for all t > 0 and f is totally convex if
it is totally convex at each point x ∈domf . Let B be a bounded subset of E. For t > 0,
define a functional on B, vf : int domf × [0,+∞) → [0,+∞) defined by

vf (B, t) = inf{vf (x, t) : x ∈ B ∪ domf}.

f is totally convex on bounded set B if vf (B, t) > 0 for any bounded subset D of E and
t > 0, where vf (., t) is the total convexity of the function f on the set B. Furthermore
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the function f is totally convex on bounded sets (see for example [10, 41]) if and only if
f is uniformly convex on bounded sets.

Let f : E → (−∞,+∞] be a proper, convex, Legendre and Gâteaux differentiable
function. Associated with f is the function Vf : E × E∗ → [0,+∞) (see [1, 14]) defined
by

Vf (x, ζ) = f(x)− ⟨x, ζ⟩+ f∗(ζ) for all x ∈ E, ζ ∈ E∗. (10)

From Definition (10), it is obvious that Vf (., .) ⩾ 0, Vf (x, ζ) = Df (x,∇f∗(ζ)) for all x ∈
E, ζ ∈ E∗ and Df (x, y) = Vf (x,∇f(y)). Furthermore, Vf (x, .) is convex for any x ∈ E.
Thus, for t ∈ (0, 1) and x, y ∈ E, we obtain

Df (z,∇f∗(t∇f(x) + (1− t)∇f(y))) ⩽ tDf (z, x) + (1− t)Df (z, y). (11)

Also, by subdifferential inequality ([23]), we get

Vf (x, ζ) + ⟨ϑ,∇f∗(ζ)− x⟩ ⩽ Vf (x, ζ + ϑ) for all x ∈ E, ζ, ϑ ∈ E∗. (12)

Definition 2.1 Let T : C → 2C be a multivalued mapping. For p ∈ C, we define
Tp, T 2p, T 3p, T 4p, . . . , Tnp, n ⩾ 1 as follows:

Tp = {p1 ∈ C : p1 ∈ Tp},

T 2p = T (Tp) :=
∪

p1∈T (p)

Tp1,

T 3p = T (T 2p) :=
∪

p2∈T 2(p)

Tp2,

...

Tnp = T (Tn−1p) :=
∪

pn−1∈Tn−1(p)

Tpn−1, n ⩾ 1

A point x ∈ C is called a fixed point of multivalued mapping T if x ∈ Tx. The set of
fixed points of T is denoted by F (T ), i.e. F (T ) = {x ∈ C : x ∈ Tx}. A point x ∈ C is
called an asymptotic fixed point of T if there exists a sequence {xn} in C such as xn ⇀ x
and lim

n→+∞
d(xn, Txn) = 0 (see [29]). The set of asymptotic fixed points of T is denoted

by F̃ (T )

Definition 2.2 Let f : E → (−∞,+∞] be convex and Gâteaux differentiable function.
A multivalued mapping T : C → 2C is said to be Bregman relatively nonexpansive

if F (T ) ̸= ∅, F (T ) = F̃ (T ) and Df (u,w) ⩽ Df (u, x) for all u ∈ F (T ), w ∈ Tx.
T is called Bregman-quasi nonexpansive if F (T ) ̸= ∅ and Df (u,w) ⩽ Df (u, x) for all
u ∈ F (T ), w ∈ Tx. T is Bregman quasi-asymptotically nonexpansive if F (T ) ̸= ∅
and there exists a real sequence {kn} ⊂ [0,+∞) such that kn → 0 as n → +∞ and
Df (u,w) ⩽ (1 + kn)Df (u, x) for all w ∈ Tnx and u ∈ F (T ). T is said T is said to
be closed if for any sequence {xn} ⊂ C with xn → x, wn ∈ Txn and wn → y, then
y ∈ Tx. A Bregman quasi-asymptotically nonexpansive multivalued mapping is said to
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be uniformly L−Lipschitz continuous if

∥sn − dn∥ ⩽ L∥x− y∥ for all x, y ∈ C, sn ∈ Tnx, dn ∈ Tny for all n ⩾ 1.

Definition 2.3 A bifunction g : C × C → R is said to be

(1) γ-strongly monotone on C if there exists γ > 0 such that

g(x, y) + g(y, x) ⩽ −γ||x− y||2 for all x, y ∈ C,

(2) Monotone if

g(x, y) + g(y, x) ⩽ 0 for all x, y ∈ C,

(3) Pseudomonotone if

g(x, y) ⩾ 0 ⇒ g(y, x) ⩽ 0 for all x, y ∈ C.

It is clear from Definition 2.3, that (1) implies (2) and (2) implies (3). To solve the
equilibrium problem, we assume the bifunction g : C × C → R satisfies the following
conditions:

(A1) g(x, x) = 0 for every x ∈ C;
(A2) g(x, .) is convex and subdifferentiable on C;
(A3) g is pseudomonotone on C with respect to EP (g, C);
(A4) g is jointly continuous on△×△ where△ is an open convex set containing C in the sense

that if x, y ∈ △ and {xn}, {yn} are two sequences in △ such that xn ⇀ x, yn ⇀ y,
then g(xn, yn) → g(x, y).

In the sequel we will need the following lemmas:

Lemma 2.4 [38] Assume the bifunction g satisfies (A1)-(A4), then the set EP (g, C) of
solutions of the equilibrium problems is closed and convex.

Lemma 2.5 [37] Let C be a nonempty subset of E and f : C → R be a convex and
subdifferentiable function, then f is minimized at x ∈ C if and only if 0 ∈ ∂f(x)+NC(x),
where NC(x) is the normal cone to C at x ∈ C, i.e.

NC(x) = {ζ ∈ E∗ : ⟨y − x, ζ⟩ ⩽ 0 for all y ∈ C}.

Lemma 2.6 [15] Let E be a reflexive Banach space and f : E → R, g : E → R are two
convex functions such that dom f ∩ dom g ̸= ∅ and f is continuous, then

∂(f + g) = ∂f(x) + ∂g(x) for all x ∈ E.

Lemma 2.7 [22] Let f : E → (−∞,+∞] be a Legendre function and C be a nonempty,
closed and convex subset of int dom f . Also, let T : C → 2C be a closed Bregman quasi-
asymptotically nonexpansive multivalued mapping. Then F (T ) is closed and convex.

Lemma 2.8 [21] Assume g : △ × △ → R satisfies conditions (A2) and (A4). Let
{xn}, {zn} be two sequences in △ such that xn ⇀ x̄, zn ⇀ z̄ where x̄, z̄ ∈ △. Then
∂2g(zn, xn) ⊆ ∂2g(z̄, x̄).
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Lemma 2.9 [4] Let f : E → (−∞,+∞] be convex and continuous on int‘dom f . Then
for all x ∈ int dom f, ∂f(x) is nonempty and bounded.

Lemma 2.10 [11] Let f : E → (−∞,+∞] be a Legendre function, then f is totally
convex on bounded subsets if and only if f is uniformly convex on bounded subsets.

Lemma 2.11 [11] Let E be a reflexive Banach space with the dual E∗ and let f : E →
(−∞,+∞] be lower semicontinuous at x ∈ int dom f. Then the following are equivalent:

(1) f is totally convex at x;
(2) There exists a convex and lower semicontinuous function φ : [0,+∞) → [0,+∞] with

int dom φ ̸= ∅, φ(0) = 0 and φ(t) > 0 for t > 0 such that

⟨y − x, y∗ − x∗⟩ ⩾ φ(∥y − x∥) for all x∗ ∈ ∂f(x), y∗ ∈ ∂f(y);

(3) There exists a nondecreasing function θ : [0,+∞) → [0,+∞] with lim
t→0

θ(t) = 0 such

that

∥y − x∥ ⩽ θ(∥y∗ − x∗∥) for all x∗ ∈ ∂f(x), y∗ ∈ ∂f(y).

Remark 2 It is known that when f : E → (−∞,+∞] is Gâteaux differentiable at
x ∈int dom f , then ∇f(x) = ∂f(x) a singleton set. Moreover in this paper we will
assume φ(t) = ct2 and θ(t) = ct for c > 1 and t > 0.

Lemma 2.12 [10] Let C be a nonempty closed and convex subset of E. Let f : E → R
be a Gâteaux differentiable and totally convex function. Let x ∈ E. Then

(i) z = P f
C(x) if and only if ⟨y − z,∇f(x)−∇f(y)⟩ ⩽ 0 for all y ∈ C;

(ii) Df (y, P
f
C(x)) +Df (P

f
C(x), x) ⩽ Df (y, x) for all y ∈ C.

Recall that a function f : E → (−∞,+∞] is called sequentially consistent [10] if for
any two sequences {xn} and {yn} in E such that {xn} is bounded, then

lim
n→+∞

Df (yn, xn) = 0 implies lim
n→+∞

∥yn − xn∥ = 0.

Lemma 2.13 [9] The function f : E → (−∞,+∞] is totally convex on bounded sets if
and only if f is sequentially consistent.

Lemma 2.14 [24] Let E be a Banach space and f : E → R be Gâteaux differentiable
function and uniformly convex on bounded subsets of E. If {xn} and {yn} are bounded
sequences in E, then

lim
n→+∞

Df (yn, xn) = 0 if and only if lim
n→+∞

∥yn − xn∥ = 0.

Lemma 2.15 [31] Let f : E → (−∞,+∞] be totally convex and Gâteaux differentiable
function. Suppose x ∈ E and the sequence {Df (xn, x)} is bounded, then the sequence
{xn} is bounded.

Lemma 2.16 [23] Let f : E → (−∞,+∞] be a Legendre function such that ∇f∗ is
bounded on bounded subsets of E∗ and x ∈ E. If the sequence {Df (x, xn)} is bounded,
then the sequence {xn} is also bounded.
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Lemma 2.17 [24] Let r > 0 be a constant and f : E → R be a uniformly convex
function on bounded subsets of E. Then

f

(
N∑
i=1

βixi

)
⩽

N∑
i=1

βif(xi)− βiβjρr(∥xi − xj∥),

where βi ∈ (0, 1) for i ∈ {1, 2, 3, . . . , N} with
∑N

i=1 βi = 1, xi ∈ Br(0) and ρr is the gauge
of the uniform convexity of f .

Lemma 2.18 [30] Let f : E → (−∞,+∞] be a uniformly Fréchet differentiable function
and bounded on bounded subsets of E. Then ∇f is uniformly continuous on bounded
subsets of E from the strong topology of E to strong topology of E∗.

Lemma 2.19 [41] Let f : E → (−∞,+∞] be a strongly coercive function. If ∇f is
uniformly continuous on bounded subsets of E, then f∗ : E∗ → (−∞,+∞] is uniformly
convex on bounded subsets of E∗.

Lemma 2.20 [41] Let f : E → (−∞,+∞] be a convex function which is bounded on
bounded subsets of E. Then the following assertions are equivalent:

(i) f is strongly coercive and uniformly convex on bounded subsets of E;
(ii) f∗ is Fréchet differentiable and ∇f∗ is uniformly norm-to-norm continuous on bounded

subsets of domf∗ = E∗.

Lemma 2.21 [18] Let E be a reflexive Banach space and C be a nonempty closed and
convex subset of E. Also, let A :→ E∗ be a mapping and f : E → R be a Legender
function. Then

←−
ProjfC (∇f∗[∇f(x)− λA(y)]) = argmin

w∈C
{λ⟨w − y,A(y) +Df (w, x)},

for every x ∈ E, y ∈ C and λ ∈ (0,∞).

Lemma 2.22 Let C be a nonempty closed convex subset of real reflexive Banach space
E, f : E → (−∞,+∞] be strongly coercive and Fréchet differentiable with the Fenchel
congugate f∗ : E∗ → (−∞,+∞] such that dom f∗ = E∗ and g : C ×C → R∪ {+∞} be
proper, convex and lower semicontinuous on the second argument. Then for every x ∈ C
and η ∈ (0,+∞) there exists a unique z ∈ C such that

z = argmin
y∈C

{
ηg(x, y) +Df (y, x)

}
.

Proof. Since f is Fréchet differentiable, it is continuous and consequently lower semi-
continuous. Then the result follows from Lemma 3.1 in Eskandani et al. [18]. ■

3. Main Results

In this section we present a linesearch algorithm as follows:

Algorithm 1
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Step 0: Let α, h, σ ∈ (0, 1), c = 1
d , d ∈ (h, 1), 0 < αn < a < 1, ηn ∈ (η, 1], 0 < η < 1

and βn,0 +
∑N

i=1 βn,i = 1.
Step 1: Let x1 ∈ C1 = C.
Step 2: Set

yn = argmin
y∈C

{
ηng(xn, y) +Df (y, xn)

}
. (13)

Step 3: If yn = xn, then set zn = xn. Otherwise find the smallest nonnegative integer m
such that {

g(zn,m, xn)− g(zn,m, yn) ⩾ α
ηn
Df (yn, xn),

zn,m = (1− σm)xn + σmyn.
(14)

Set σn = σm and zn = zn,m and go to step 4.
Step 4: Select wn ∈ ∂2g(zn, xn) and compute

un = P f
C∇f∗(∇f(xn)− γnwn), γn =

{
hg(zn,xn)
||wn||2 , yn ̸= xn

0, Otherwise
.

Step 5: Compute
vn = ∇f∗(αn∇f(xn) + (1− αn)(βn,0∇f(un) +

∑N
i=1 βn,i∇f(sn,i))),

Cn+1 = {p ∈ Cn : Df (p, vn) ⩽ Df (p, xn) + τn},
xn+1 = P f

Cn+1
x1, n ⩾ 1,

(15)

where sn,i ∈ Tn
i un and τn = (1− αn)M

N
n sup

q∈Ω
Df (q, xn) and MN

n =
∑N

i=1 βn,ikn,i.

Step 6: Set n = n+ 1 and go to step 2.

In the following result, we show that the linesearch zn,m and γn are well defined.

Lemma 3.1 Let C be a nonempty closed convex subset of a reflexive Banach space E.
Also, let f : E → (−∞,+∞] be Legendre function and g : C×C → R satisfies (A1)-(A4).
Assume yn ̸= xn for some n ∈ N. Then

(1) There exists m ∈ N such that inequality (14) hold;
(2) g(zn, xn) > 0;
(3) 0 /∈ ∂2g(zn, xn).

Proof. (1) By contradiction assume for each m ∈ N

g(zn,m, xn)− g(zn,m, yn) <
α

ηn
Df (yn, xn). (16)

Since zn,m = (1−σm)xn+σmyn, it follows that zn,m → xn as m → +∞ and using (A4),
we have from (16) that

g(xn, xn)− g(xn, yn) ⩽
α

ηn
Df (yn, xn).
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By (A1), we get

0 ⩽ g(xn, yn) +
α

ηn
Df (yn, xn). (17)

Since yn is the solution of (13), we have

ηng(xn, yn) +Df (yn, xn) ⩽ ηng(xn, y) +Df (y, xn) for all y ∈ C.

In particular, for xn ∈ C, we get

ηng(xn, yn) +Df (yn, xn) ⩽ 0. (18)

By (17) and (18), we obtain 1−α
ηn

Df (yn, xn) ⩽ 0. Since ηn ⩽ 1, we obtain (1 −
α)Df (yn, xn) ⩽ 0. By our assumption f is Legendre, then f strictly convex and con-
sequently Df (yn, xn) > 0 when yn ̸= xn. This implies (1 − α) ⩽ 0 which is not possible
because α ∈ (0, 1). Therefore (1) holds.

(2) By (A1) and (A2), we have

0 = g(zn, zn) = g(zn, (1− σn)xn + σnyn) ⩽ (1− σn)g(zn, xn) + σng(zn, yn). (19)

From (14) and (19), we obtain

g(zn, xn) ⩾ σn(g(zn, xn)− g(zn, yn)) ⩾
ασn
ηn

Df (yn, xn) > 0,

since yn ̸= xn. Therefore (2) holds.

(3) The proof can be found in Tran et al. [38] (Lemma 4.5). ■

Lemma 3.2 Let C be a nonempty closed convex subset of a reflexive Banach space E,
f : E → (−∞,+∞] be convex, strongly coercive and Legendre. If g : △×△ → R satisfies
(A1)-(A4) and yn is defined as in (13), then we have

⟨y − yn,∇f(xn)−∇f(yn)⟩ ⩽ ηng(xn, y)− ηng(xn, yn).

for any n ∈ N and y ∈ C

Proof. Let n ⩾ 1 and y ∈ C. From (13), Lemma 2.5 and Lemma 2.6, we obtain

0 ∈ ηn∂2g(xn, yn) +∇1Df (yn, xn) +NC(yn).

Therefore there exists w ∈ ∂2g(xn, yn) and w̄ ∈ NC(yn) such that

0 = ηnw +∇f(yn)−∇f(xn) + w̄. (20)

Since w ∈ ∂2g(xn, yn), we have

g(xn, y) ⩾ g(xn, yn) + ⟨y − yn, w⟩. (21)
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Using (20) and definition of NC(yn), we get ⟨y − yn,−ηnw −∇f(yn) +∇f(xn)⟩ ⩽ 0 so
that

ηn⟨y − yn, w⟩ ⩾ ⟨y − yn,∇f(xn)−∇f(yn)⟩. (22)

Combining (21) and (22), we obtain

ηng(xn, y)− ηng(xn, yn) ⩾ ⟨y − yn,∇f(xn)−∇f(yn)⟩.

■

Now we prove the following strong convergence theorem.

Theorem 3.3 Let C be a nonempty closed convex subset of a real reflexive Banach
space E and f : E → (−∞,+∞] be Legendre, uniformly Fréchet differentiable, strongly
coercive, totally convex and bounded on bounded subsets of E. For each i = 1, 2, 3, . . . , N ,
let Ti : C → 2C be closed Bregman quasi asymptotically nonexpansive multivalued
mappings with sequences {kn,i} and g : △×△ → R satisfies conditions (A1)-(A4) such
that Ω = ∩N

i=1F (Ti) ∩ EP (g, C) ̸= ∅. If βn,i ∈ (µ, 1 − µ) for some µ ∈ (0, 1), then the

sequence generated by linesearch algorithm converges strongly to u∗ = P f
Ωx1.

Proof. We start by showing Ω = ∩N
i=1F (Ti)∩EP (g, C) is closed and convex. By Lemma

2.4, EP (g, C) is closed and convex and it follows from Lemma 2.7 that ∩N
i=1F (Ti) is closed

and convex so that Ω = ∩N
i=1F (Ti) ∩ EP (g, C) is closed and convex.

Next we show Cn forall n ⩾ 1 is closed and convex.
Observe C1 = C is closed and convex. Assume Cn is closed and convex for some n > 1.
Using the three point identity (9), it is easy to see Df (p, vn,) ⩽ Df (p, xn) + τn if and
only if

⟨p,∇f(xn)−∇f(vn)⟩ ⩽ ⟨vn,∇f(xn)−∇f(vn)⟩+Df (vn, xn) + τn.

Therefore we obtain Cn+1 is closed and convex.
We now show that Ω ⊂ Cn for all n ⩾ 1. It is clear that Ω ⊂ C = C1. Suppose

Ω ⊂ Cn for some n > 1. Let hn = ∇f∗(βn,0∇f(un) +
∑N

i=1 βn,i∇f(sn,i))). then for any
p ∈ Ω ⊂ Cn and using (10), we have

Df (p, vn) = Df

(
p,∇f∗(αn∇f(xn) + (1− αn)∇f(hn))

)
= Vf (p, αn∇f(xn) + (1− αn)∇f(hn))

= f(p)− ⟨p, αn∇f(xn) + (1− αn)∇f(hn)⟩

+f∗(αn∇f(xn) + (1− αn)∇f(hn))

⩽ f(p)− αn⟨p,∇f(xn)⟩ − (1− αn)⟨p,∇f(hn)⟩

+αnf
∗(∇f(xn)) + (1− αn)f

∗(∇f(hn))

= αnVf (p,∇f(xn)) + (1− αn)Vf (p,∇f(hn))

= αnDf (p, xn) + (1− αn)Df (p, hn). (23)

and using (11),

Df (p, hn) = Df (p,∇f∗(βn,0∇f(un) +

N∑
i=1

βn,i∇f(sn,i)))) ⩽ βn,0Df (p, un) +

N∑
i=1

βn,iDf (p, sn,i).
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Since sn,i ∈ Tn
i un and Ti, i = 1, 2, 3, . . . , N are Bregman quasi asymptotically nonex-

pansive multivalued mappings, we get

Df (p, hn) ⩽ βn,0Df (p, un) +

N∑
i=1

βn,i(1 + kn,i)Df (p, un)

= βn,0Df (p, un) +

N∑
i=1

βn,iDf (p, un) +

N∑
i=1

βn,ikn,iDf (p, un)

= Df (p, un) +

N∑
i=1

βn,ikn,iDf (p, un). (24)

But from the definition of un, Lemma 2.12(ii) and (12), we have

Df (p, un) = Df (p, P
f
C∇f∗(∇f(xn)− γnwn))

⩽ Df (p,∇f∗(∇f(xn)− γnwn))

= Vf (p,∇f(xn)− γnwn)

⩽ Vf (p,∇f(xn)− γnwn + γnwn)− ⟨∇f∗(∇f(xn)− γnwn)− p, γnwn⟩

= Df (p, xn) + ⟨∇f∗(∇f(xn)− γnwn)− p,−γnwn⟩

= Df (p, xn) + ⟨∇f∗(∇f(xn)− γnwn)−∇f∗(∇f(xn)),−γnwn⟩ − ⟨xn − p, γnwn⟩.

By Lemma 2.11(3) and Remark 2, we obtain

Df (p, un) ⩽ Df (p, xn) + ∥∇f∗(∇f(xn)− γnwn)−∇f∗(∇f(xn))∥∥γnwn∥ − γn⟨xn − p, wn⟩

⩽ Df (p, xn) + θ

(
∥∇f(∇f∗(∇f(xn)− γnwn))−∇f(∇f∗(∇f(xn)))∥

)
∥γnwn∥

−γn⟨xn − p, wn⟩

= Df (p, xn) + cγ2n∥wn∥2 − γn⟨xn − p, wn⟩. (25)

Since wn ∈ ∂2g(zn, xn), we have ⟨xn−p, wn⟩ ⩾ g(zn, xn)−g(zn, p). By pseudomonotonic-
ity property of g and p ∈ EP (g, C), we get g(zn, p) ⩽ 0. Hence,

γn⟨xn − p, wn⟩ ⩾ γn(g(zn, xn)− g(zn, p)) ⩾ γng(zn, xn) =
γ2n∥wn∥2

h
.

Therefore, from (25), we have

Df (p, un) ⩽ Df (p, xn) +
γ2n∥wn∥2

d
− γ2n∥wn∥2

h

= Df (p, xn)− (
1

h
− 1

d
)γ2n∥wn∥2 (26)

⩽ Df (p, xn).
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Putting (26) in (24), we obtain

Df (p, hn) ⩽ Df (p, xn)− (
1

h
− 1

d
)γ2n∥wn∥2

+

N∑
i=1

βn,ikn,iDf (p, xn)−
N∑
i=1

βn,ikn,i(
1

h
− 1

d
)γ2n∥wn∥2

⩽ Df (p, xn)− (
1

h
− 1

d
)γ2n∥wn∥2 +MN

n sup
p∈Ω

Df (p, xn) (27)

⩽ Df (p, xn) +MN
n sup

p∈Ω
Df (p, xn).

Using (27) in (23), we have

⩽ αnDf (p, xn) + (1− αn)[Df (p, xn) +MN
n sup

p∈Ω
Df (p, xn)]

= Df (p, xn) + (1− αn)M
N
n sup

p∈Ω
Df (p, xn)

= Df (p, xn) + τn. (28)

This implies p ∈ Cn+1 and Ω ⊂ Cn+1.
Next we show the sequence {xn} is Cauchy.

Now, xn+1 = P f
Cn+1

x1 ∈ Cn+1 ⊂ Cn for all n ⩾ 1. Therefore,

Df (xn, x1) = Df (P
f
Cn

x1, x1) ⩽ Df (xn+1, x1). (29)

This shows that {Df (xn, x1)} is decreasing sequence. Also, by Lemma 2.12(ii), we obtain

Df (xn, x1) ⩽ Df (p, x1)−Df (p, xn) ⩽ Df (p, x1) for all n ⩾ 1. (30)

By (29) and (30), we conclude that lim
n→+∞

Df (xn, x1) exists. Since {Df (xn, x1)} is

bounded and the function f is totally convex and uniformly Fréchet differentiable, it
follows from Lemma 2.15 that the sequence {xn} is bounded. Observe that

Df (xn+1, xn) = Df (xn+1, P
f
Cn

x1) ⩽ Df (xn+1, x1)−Df (xn, x1). (31)

Then it follows that lim
n→+∞

Df (xn+1, xn) = 0. Due to assumption that the function f is

totally convex on bounded sets, then f is sequentially consistent (by Lemma 2.13) and
therefore,

lim
n→+∞

∥xn+1 − xn∥ = 0. (32)

Now, using (31) and for any m, n ∈ N with m > n, we obtain

Df (xm, xn) = Df (xm, P f
Cn

x1) ⩽ Df (xm, x1)−Df (xn, x1),
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so that lim
n,m→+∞

Df (xm, xn) = 0 and consequently lim
m,n→+∞

∥xm − xn∥ = 0. This implies

{xn} is Cauchy sequence in E. Since E is reflexive and C is closed, there exists some
u∗ ∈ C such that lim

n→+∞
∥xn − u∗∥ = 0.

Next we prove that u∗ ∈ ∩N
i=1F (Ti) ∩ EP (g, C). Since xn+1 ∈ Cn+1, then from (15),

we have Df (xn+1, vn) ⩽ Df (xn+1, xn) + τn. From the definition of τn, we get τn → 0 as
n → +∞. It follows that Df (xn+1, vn) → 0 as n → +∞ and essential consistency of f
guarantees that

∥xn+1 − vn∥ → 0 as n → +∞. (33)

From (32) and (33), we obtain

∥vn − xn∥ → 0 as n → +∞. (34)

By Lemma 2.18, ∇f is uniformly norm-to-norm continuous on bounded subsets of E.
Thus, from (34), we get

∥∇f(vn)−∇f(xn)∥ → 0 as n → +∞. (35)

From definition of vn and condition 0 < αn < a < 1, we have

(1− αn)(∇f(hn)−∇f(xn)) = ∇f(vn)−∇f(xn),

so that

∥∇f(hn)−∇f(xn)∥ =
1

1− αn
∥∇f(vn)−∇f(xn)∥ ⩽ 1

1− a
∥∇f(vn)−∇f(xn)∥.

It follows from (35) that

∥∇f(hn)−∇f(xn)∥ → 0 as n → +∞. (36)

By Lemma 2.20, ∇f∗ is norm-to-norm uniformly continuous on bounded subsets of E∗,
hence we have from (36) that

∥hn − xn∥ → 0 as n → +∞. (37)

Since {xn} is bounded and ∇f is bounded on bounded subsets of E, then there exists
a real number say l > 0 such that Df (p, xn) ⩽ l for all n ⩾ 1. Therefore, from (26),
we have that Df (p, un) is bounded and consequently Df (p, sn,i), i = 1, 2, 3, . . . , N are
bounded. The function f is totally convex and strongly coercive which is bounded on
bounded subsets of E. Now, by Lemma 2.10 and Lemma 2.20, we conclude that ∇f∗ is
norm-to-norm uniformly continuous on bounded subsets of E∗ and therefore is bounded.
Hence, by Lemma 2.16, {un} and {sn,i}, i = 1, 2, 3, . . . , N are bounded.
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Let r = max
1⩽i⩽N

sup
n⩾1

{∥∇f(un)∥, ∥∇f(sn,i)∥}. Then by (10), we have

Df (p, hn) = Df (p,∇f∗(βn,0∇f(un) +

N∑
i=1

βn,i∇f(sn,i))))

= Vf (p, βn,0∇f(un) +

N∑
i=1

βn,i∇f(sn,i))

= f(p)− ⟨p, βn,0∇f(un) +

N∑
i=1

βn,i∇f(sn,i)⟩+ f∗(βn,0∇f(un) +

N∑
i=1

βn,i∇f(sn,i)).

By our assumption, f is uniformly Fréchet differentiable and bounded on bounded subsets
of E, therefore by Lemma 2.18 ∇f is uniformly continuous on bounded subsets which
implies by Lemma 2.19 f∗ is uniformly convex. Hence, from Lemma 2.17, we have

Df (p, hn) ⩽ f(p)− βn,0⟨p,∇f(un)⟩ −
N∑
i=1

βn,i⟨p,∇f(sn,i)⟩+ βn,0f
∗(∇f(un))

+

N∑
i=1

βn,if
∗(∇f(sn,i))− βn,0βn,iρ

∗
r(∥∇f(un)−∇f(sn,i)∥)

= βn,0Vf (p,∇f(un)) +

N∑
i=1

βn,iVf (p,∇f(sn,i))− βn,0βn,iρ
∗
r(∥∇f(un)−∇f(sn,i)∥)

= βn,0Df (p, un) +

N∑
i=1

βn,iDf (p, sn,i)− βn,0βn,iρ
∗
r(∥∇f(un)−∇f(sn,i)∥).

Since Ti, i = 1, 2, 3, . . . , N are Bregman quasi multivalued mappings and sn,i ∈ Tn
i un,

we obtain

Df (p, hn) ⩽ βn,0Df (p, un) +

N∑
i=1

βn,i(1 + kn,i)Df (p, un)− βn,0βn,iρ
∗
r(∥∇f(un)−∇f(sn,i)∥)

= Df (p, un) +

N∑
i=1

βn,ikn,iDf (p, un)− βn,0βn,iρ
∗
r(∥∇f(un)−∇f(sn,i)∥). (38)

Using (26), (27) in (38), βn,0 and βn,i ∈ (µ, 1− µ) for i = 1, . . . , N and µ ∈ (0, 1), we get

Df (p, hn)

⩽ Df (p, xn)− (
1

h
− 1

d
)γ2n∥wn∥2 +MN

n sup
p∈Ω

Df (p, xn)− βn,0βn,iρ
∗
r(∥∇f(un)−∇f(sn,i)∥)

= Df (p, xn)− (
1

h
− 1

d
)γ2n∥wn∥2 + τn − βn,0βn,iρ

∗
r(∥∇f(un)−∇f(sn,i)∥)

⩽ Df (p, xn)− (
1

h
− 1

d
)γ2n∥wn∥2 + τn − µ2ρ∗r(∥∇f(un)−∇f(sn,i)∥). (39)
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Now,

Df (p, xn)−Df (p, hn) = f(hn)− f(xn) + ⟨p− hn,∇f(hn)⟩ − ⟨p− xn,∇f(xn)⟩

= f(hn)− f(xn) + ⟨p− xn,∇f(hn)⟩+ ⟨xn − hn,∇f(hn)⟩ − ⟨p− xn,∇f(xn)⟩

= f(hn)− f(xn) + ⟨p− xn,∇f(hn)−∇f(xn)⟩+ ⟨xn − hn,∇f(hn)⟩.

Therefore,

Df (p, xn)−Df (p, hn) ⩽ |f(hn)− f(xn)|+ ∥p− xn∥∥∇f(hn)−∇f(xn)∥

+∥xn − hn∥∥∇f(hn)∥.

Hence it follows from (36) and (37) that

Df (p, xn)−Df (p, hn) → 0 as n → +∞. (40)

Using (40), it follows from (39) that

lim
n→+∞

γn∥wn∥ = 0 and lim
n→+∞

ρ∗r(∥∇f(un)−∇f(sn,i)∥ = 0 for all i ∈ {1, 2, 3, . . . , N}.

By the property of ρ∗r we deduce lim
n→+∞

(∥∇f(un) − ∇f(sn,i)∥ = 0 for all i ∈
{1, 2, 3, . . . , N}. As ∇f∗ is norm-to-norm uniformly continuous on bounded subsets of
E∗, we get

lim
n→+∞

∥un − sn,i∥ = 0 for all i ∈ {1, 2, 3, . . . , N}. (41)

Thus, we obtain from Lemma 2.14

lim
n→+∞

Df (un, sn,i) = 0 for all i ∈ {1, 2, 3, . . . , N}. (42)

Now,

Df (un, hn) = Df (un,∇f∗(βn,0∇f(un) +

N∑
i=1

βn,i∇f(sn,i))))

⩽ βn,0Df (un, un) +

N∑
i=1

βn,iDf (un, sn,i)

=

N∑
i=1

βn,iDf (un, sn,i).

It follows from (42) that Df (un, hn) → 0 as n → +∞. The fact that f is totally convex
on bounded subsets of E, then by Lemma 2.13, f is sequentially consistent and so

∥un − hn∥ → 0 as n → +∞. (43)
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Since ∥xn − un∥ ⩽ ∥xn − hn∥+ ∥un − hn∥, then from (37) and (43), we get

∥un − xn∥ → 0 as n → +∞. (44)

Therefore, from (32) and (44), we get

∥un − un+1∥ → 0 as n → +∞. (45)

Also, from lim
n→+∞

∥xn − u∗∥ = 0 and (44), we obtain

lim
n→+∞

∥un − u∗∥ = 0. (46)

Similarly, from (41) and (46), we have

lim
n→+∞

∥sn,i − u∗∥ = 0 for all i ∈ {1, 2, 3, . . . , N}. (47)

For each i = 1, 2, 3, . . . , N , let {dn,i} be a sequence generated as follows:

d2,i ∈ Ti(s1,i) ⊂ T 2
i (u1), d3,i ∈ Ti(s2,i) ⊂ T 3

i (u2), . . . ,

dn,i ∈ Ti(sn−1,i) ⊂ Tn
i (un−1), dn+1,i ∈ Ti(sn,i) ⊂ Tn+1

i (un), . . . .

By our assumption, Ti is Li−Lipschitz continuous for each i = 1, 2, 3, . . . , N , then

∥dn+1,i − sn,i∥ ⩽ ∥dn+1,i − sn+1,i∥+ ∥sn+1,i − un+1∥+ ∥un+1 − un∥+ ∥un − sn,i∥

⩽ (1 + Li)∥un − un+1∥+ ∥sn+1,i − un+1∥+ ∥un − sn,i∥.

Using (41) and (45), we obtain

lim
n→+∞

∥dn+1,i − sn,i∥ = 0 for all i ∈ {1, 2, 3, . . . , N},

and consequently from (47), we get

lim
n→+∞

∥dn+1,i − u∗∥ = 0 for all i ∈ {1, 2, 3, . . . , N}. (48)

Since dn+1,i ∈ Ti(sn,i), dn+1,i → u∗ as n → +∞ and sn,i → u∗ as n → +∞ for
each i ∈ {1, 2, 3, . . . , N}, then by closedness of Ti we have that u∗ ∈ Ti(u

∗) for each
i ∈ {1, 2, 3, . . . , N}, i.e. u∗ ∈ ∩N

i=1F (Ti).
We now show u∗ ∈ EP (g, C). Let H(y) = ηng(xn, y) + Df (y, xn). Since Df (., .) is

continuous, it follows from Lemma 2.6 that

∂H(y) = ∂(ηng(xn, y) +Df (y, xn)) = ηn∂2g(xn, y) +∇1Df (y, xn).

Let p∗1, p
∗
2 ∈ C, q∗1 ∈ ∂2g(xn, p

∗
1) and q∗2 ∈ ∂2g(xn, p

∗
2), then

⟨p∗1 − y, q∗1⟩ ⩾ g(xn, p
∗
1)− g(xn, y) for all y ∈ C, (49)
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and

⟨p∗2 − y, q∗2⟩ ⩾ g(xn, p
∗
2)− g(xn, y) for all y ∈ C. (50)

Setting y = p∗2 in (49), y = p∗1 in (50) and combining the two inequalities, we obtain

⟨p∗1 − p∗2, q
∗
1 − q∗2⟩ ⩾ 0. (51)

Observe ∇1Df (p
∗
1, xn) = ∇f(p∗1)−∇f(xn) and ∇1Df (p

∗
2, xn) = ∇f(p∗2)−∇f(xn).

Since f is uniformly Fréchet differentiable and totally convex, then in view of Lemma
2.11(2) and Remark 2, we get

⟨p∗1 − p∗2,∇f(p∗1)−∇f(p∗2)⟩ ⩾ φ(∥p∗1 − p∗2∥) = c∥p∗1 − p∗2∥2. (52)

From (51) and (52), we have

⟨p∗1 − p∗2, ηnq
∗
1 − ηnq

∗
2 +∇f(p∗1)−∇f(p∗2)⟩ ⩾ c∥p∗1 − p∗2∥2,

which implies

⟨p∗1 − p∗2, ηnq
∗
1 +∇f(p∗1)−∇f(xn)− (ηnq

∗
2 +∇f(p∗2)−∇f(xn))⟩ ⩾ c∥p∗1 − p∗2∥2. (53)

Now, for p∗ ∈ C, define Mn(p
∗) = ηnq

∗+∇f(p∗)−∇f(xn) where q
∗ ∈ ∂2g(xn, p

∗). Then
Mn(p

∗) ⊆ ∂H(p∗) for any p∗ ∈ C. Therefore, it follows from (53) that

⟨p∗1−p∗2, t
n(p∗1)− tn(p∗2)⟩ ⩾ c∥p∗1−p∗2∥2 for all tn(p∗1) ∈ Mn(p

∗
1), t

n(p∗2) ∈ Mn(p
∗
2). (54)

Hence Mn is multivalued strongly monotone. Since

yn = argmin
y∈C

{
ηng(xn, y) +Df (y, xn)

}
,

then by Lemma 2.5 we have 0 ∈ ∂H(yn) +NC(yn), i.e. −Mn(yn) ⊆ NC(yn). Hence,

⟨y − yn, t
n(yn)⟩ ⩾ 0 for all y ∈ C, tn(yn) ∈ Mn(yn). (55)

Let p∗1, p∗2 be replaced by xn, yn in (54) respectively and y = xn in (55), then

⟨xn − yn, t
n(xn)⟩ ⩾ ⟨xn − yn, t

n(yn)⟩+ c∥xn − yn∥2 ⩾ c∥xn − yn∥2 (56)

for any tn(xn) ∈ Mn(xn) ⊆ ∂H(xn), tn(yn) ∈ Mn(yn) ⊆ ∂H(yn). The fact that
∇1Df (xn, xn) = 0, then tn(xn) ∈ ηn∂2g(xn, xn). Since lim

n→+∞
∥xn − u∗∥ = 0, we ob-

tain from Lemma 2.8, ∂2g(xn, xn) ⊆ ∂2g(u
∗, u∗). As 0 < η ⩽ ηn ⩽ 1 and using Lemma

2.9, it follows that {tn(xn)} is bounded. Thus, from (56) and boundedness of {xn}, we
conclude that {yn} is bounded. Consequently boundedness of zn follows from its defi-
nition and boundedness of {xn} and {yn}. Then there exists a point say z̄ ∈ C such
that zn ⇀ z̄. Therefore since wn ∈ ∂2g(zn, xn), then by Lemma 2.8 and 2.9 we have
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that {wn} is bounded. From the definition of γn, we get g(zn, xn) = γn∥wn∥∥wn∥
h . Since

lim
n→+∞

γn∥wn∥ = 0 and 0 < h < d < 1, then

lim
n→+∞

g(zn, xn) = 0. (57)

On the other hand, by condition (A1) and convexity of g(zn, .), we have

0 = g(zn, zn) = g(zn, (1− σn)xn + σnyn) ⩽ (1− σn)g(zn, xn) + σng(zn, yn).

Therefore, from the algorithm and (57), we obtain

ασn
ηn

Df (yn, xn) ⩽ σn[g(zn, xn)− g(zn, yn)] ⩽ g(zn, xn) → 0, as n → +∞. (58)

We consider the following two cases:
Case I. If lim sup

n→+∞
σn > 0, then there exists σ′ and a subsequence denoted by σn of σn

such that σn → σ′. From (58) and condition ηn ∈ (η, 1], 0 < η < 1, we obtain

Df (yn, xn) → 0, as n → +∞,

and using Lemma 2.14 we obtain

lim
n→+∞

∥yn − xn∥ = 0. (59)

Case II: If lim
n→+∞

σn = 0, then let m be the smallest positive integer such that

g(zn,m, xn)− g(zn,m, yn) ⩾
α

ηn
Df (yn, xn) and zn,m = (1− σm)xn + σmyn.

Therefore for m− 1 < m, we have

g(zn,m−1, xn)− g(zn,m−1, yn) <
α

ηn
Df (yn, xn). (60)

Now from Lemma 3.2 and letting y = xn, we have

−ηng(xn, yn) ⩾ ⟨xn − yn,∇f(xn)−∇f(yn) = Df (xn, yn) +Df (yn, xn) ⩾ Df (yn, xn),

i.e.,

Df (yn, xn) ⩽ −ηng(xn, yn). (61)

From (60) and (61), we get

g(zn,m−1, xn)− g(zn,m−1, yn) < −αg(xn, yn). (62)

We know that there exists a subsequence of {yn} denote it by {yn} such that yn ⇀ y′ ∈ C
as n → +∞. Also since xn → u∗ as n → +∞, then from the definition of zn,m−1, we
obtain zn,m−1 → u∗ as n → +∞ (because σm = σn). Therefore by conditions (A1) and
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(A4), it follows from (62) that (1 − α)g(u∗, y′) ⩾ 0. Since α ∈ (0, 1), then g(u∗, y′) ⩾ 0
and consequently from (61), we have Df (yn, xn) → 0 as n → +∞. Again by Lemma 2.14,
we get lim

n→+∞
∥yn − xn∥ = 0. Since xn → u∗ as n → +∞, we have yn → u∗ as n → +∞.

Also from Lemma 3.2, we have

ηng(xn, y)− ηng(xn, yn) ⩾ ⟨y − yn,∇f(xn)−∇f(yn)⟩ for all y ∈ C.

Allowing n → +∞ by considering conditions (A1) and (A4), we obtain g(u∗, y) ⩾
0, for all y ∈ C, which shows that u∗ ∈ EP (g, C). Thus, u∗ ∈ ∩N

i=1F (Ti)∩EP (g, C) = Ω.

Next we show u∗ = P f
Ωx1. Since xn = P f

Cn
x1, then by Lemma 2.12(i) we obtain

⟨xn − y,∇f(x1)−∇f(xn)⟩ ⩾ 0 for all y ∈ Cn.

Since Ω ⊂ Cn, we have ⟨xn − h,∇f(x1)−∇f(xn)⟩ ⩾ 0 for all h ∈ Ω. Allowing n → +∞
in the equation above, we get ⟨u∗ − h,∇f(x1)−∇f(u∗)⟩ ⩾ 0 for all h ∈ Ω. and also, by

Lemma 2.12(i), we have u∗ = P f
Ωx1. This completes the proof. ■

4. Application

Observe that in equation (1) if we set g(z∗, y) = ⟨y − z∗,Az∗⟩, where A : C → E∗,
then the equilibrium problem reduces to classical variational inequality problem which
is problem of finding z∗ ∈ C such that

⟨y − z∗,Az∗⟩ ⩾ 0 for all y ∈ C. (63)

The set of solutions of problem (63) is denoted by V I(A, C). Therefore, in view of

Lemma 2.21, the strongly convex problem (13) becomes yn = P f
C∇f∗(∇f(xn)−ηnA(xn)).

Also equation (14) becomes ⟨xn − zn,m,Azn,m⟩ ⩾ α
ηn
Df (yn, xn). With this, we have the

following linesearch algorithm for variational inequality problem.

Algorithm 2

Step 0: Let α, h, σ ∈ (0, 1), c = 1
d , d ∈ (h, 1), 0 < αn < a < 1, ηn ∈ (η, 1], 0 < η < 1

and βn,0 +
∑N

i=1 βn,i = 1.
Step 1: Let x1 ∈ C1 = C.
Step 2: Set

yn = P f
C∇f∗(∇f(xn)− ηnA(xn)). (64)

Step 3: If yn = xn, then set zn = xn. Otherwise find the smallest nonnegative integer m
such that

{
⟨xn − zn,m,A(zn,m)⟩ ⩾ α

ηn
Df (yn, xn),

zn,m = (1− σm)xn + σmyn.
(65)
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Set σn = σm and zn = zn,m and go to step 4.
Step 4: Compute

un = P f
C∇f∗(∇f(xn)− γnA(zn)), γn =

{
h⟨xn−zn,A(zn)⟩
||A(zn)||2 , yn ̸= xn

0, Otherwise
.

Step 5: Compute


vn = ∇f∗(αn∇f(xn) + (1− αn)(βn,0∇f(un) +

∑N
i=1 βn,i∇f(sn,i))),

Cn+1 = {p ∈ Cn : Df (p, vn) ⩽ Df (p, xn) + τn},
xn+1 = P f

Cn+1
x1, n ⩾ 1,

(66)

where sn,i ∈ Tn
i un and τn = (1− αn)M

N
n sup

q∈Ω
Df (q, xn) and MN

n =
∑N

i=1 βn,ikn,i.

Step 6: Set n = n+ 1 and go to step 2.
We observe that in order to apply Theorem 3.3 to variational inequality problem,

conditions (A1)-(A4) must be satisfied. Clearly (A1) and (A2) are satisfied. condition
(A3) now becomes A : C → E∗ is pseudomonotone on V I(A, C), that is; ⟨y−z∗,A(y)⟩ ⩾
0, ∀ z∗ ∈ V I(A, C). Moreover if A : △ → E∗ is such that for every sequence {zn} in △,
zn ⇀ z implies Azn → Az, then the corresponding function g is jointly continuous on
△×△ (i.e. condition A(4)).

Theorem 4.1 Let C be a nonempty closed convex subset of a real reflexive Banach
space E and f : E → (−∞,+∞] be Legendre, uniformly Fréchet differentiable, strongly
coercive, totally convex and bounded on bounded subsets of E. For each i = 1, 2, 3, . . . , N ,
let Ti : C → 2C be closed Bregman quasi asymptotically nonexpansive multivalued
mappings with sequences {kn,i} and A : △ → E∗ satisfies conditions (A1)-(A4) such
that Ω = ∩N

i=1F (Ti) ∩ V I(A, C) ̸= ∅. If βn,i ∈ (µ, 1 − µ) for some µ ∈ (0, 1), then the

sequence generated by Algorithm 2 converges strongly to u∗ = P f
Ωx1.

If Ti, i = 1, 2, 3, . . . , N are Bregman quasi nonexpansive multivalued mappings, then
Algorithm 1 reduces to the following algorithm.

Algorithm 3

Step 0: Let α, h, σ ∈ (0, 1), c = 1
d , d ∈ (h, 1), 0 < αn < a < 1, ηn ∈ (η, 1], 0 < η < 1

and βn,0 +
∑N

i=1 βn,i = 1.
Step 1: Let x1 ∈ C1 = C.
Step 2: Set

yn = argmin
y∈C

{
ηng(xn, y) +Df (y, xn)

}
. (67)

Step 3: If yn = xn, then set zn = xn. Otherwise find the smallest nonnegative integer m
such that {

g(zn,m, xn)− g(zn,m, yn) ⩾ α
ηn
Df (yn, xn),

zn,m = (1− σm)xn + σmyn.
(68)
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Set σn = σm and zn = zn,m and go to step 4.
Step 4: Select wn ∈ ∂2g(zn, xn) and compute

un = P f
C∇f∗(∇f(xn)− γnwn), γn =

{
hg(zn,xn)
||wn||2 , yn ̸= xn

0, Otherwise
.

Step 5: Compute


vn = ∇f∗(αn∇f(xn) + (1− αn)(βn,0∇f(un) +

∑N
i=1 βn,i∇f(sn,i))),

Cn+1 = {p ∈ Cn : Df (p, vn) ⩽ Df (p, xn)},
xn+1 = P f

Cn+1
x1, n ⩾ 1,

(69)

where sn,i ∈ Ti(un).
Step 6: Set n = n+ 1 and go to step 2.
Using Algorithm 3, Theorem 3.3 reduces to the following corollary.

Corollary 4.2 Let C be a nonempty closed convex subset of a real reflexive Banach
space E and f : E → (−∞,+∞] be Legendre, uniformly Fréchet differentiable, strongly
coercive, totally convex and bounded on bounded subsets of E. For each i = 1, 2, 3, . . . , N ,
let Ti : C → 2C be closed Bregman quasi nonexpansive multivalued mappings and
g : △×△ → R satisfies conditions (A1)-(A4) such that Ω = ∩N

i=1F (Ti) ∩EP (g, C) ̸= ∅.
If βn,i ∈ (µ, 1 − µ) for some µ ∈ (0, 1), then the sequence generated by Algorithm 3

converges strongly to u∗ = P f
Ωx1.

As a direct consequence of Remark 1 and Theorem 3.3, we have the following algorithm
and corollary.

Algorithm 4

Step 0: Let α, h, σ ∈ (0, 1), c = 1
d , d ∈ (h, 1), 0 < αn < a < 1, ηn ∈ (η, 1], 0 < η < 1

and βn,0 +
∑N

i=1 βn,i = 1.
Step 1: Let x1 ∈ C1 = C.
Step 2: Set

yn = argmin
y∈C

{
ηng(xn, y) +

1

2
ϕ(y, xn)

}
. (70)

Step 3: If yn = xn, then set zn = xn. Otherwise find the smallest nonnegative integer m
such that {

g(zn,m, xn)− g(zn,m, yn) ⩾ α
2ηn

ϕ(yn, xn),

zn,m = (1− σm)xn + σmyn.
(71)

Set σn = σm and zn = zn,m and go to step 4.
Step 4: Select wn ∈ ∂2g(zn, xn) and compute

un = ΠCJ
−1(J(xn)− γnwn), γn =

{
hg(zn,xn)
||wn||2 , yn ̸= xn

0, Otherwise
.
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Step 5: Computevn = J−1(αnJ(xn) + (1− αn)(βn,0J(un) +
∑N

i=1 βn,iJ(sn,i))),
Cn+1 = {p ∈ Cn : ϕ(p, vn) ⩽ ϕ(p, xn) + τn},
xn+1 = ΠCn+1

x1, n ⩾ 1,
(72)

where sn,i ∈ Tn
i un and τn = (1− αn)M

N
n sup

q∈Ω
ϕ(p, xn) and MN

n =
∑N

i=1 βn,ikn,i.

Step 6: Set n = n+ 1 and go to step 2.

Corollary 4.3 Let C be a nonempty closed convex subset of a 2−uniformly convex and
uniformly smooth Banach space E with the dual E∗ and J : E → E∗ be a normalized
duality mapping. For each i = 1, 2, 3, . . . , N , let Ti : C → 2C be closed quasi-ϕ- asymp-
totically nonexpansive multivalued mappings with sequences {kn,i} and g : △×△ → R
satisfies conditions (A1)-(A4) such that Ω = ∩N

i=1F (Ti)∩EP (g, C) ̸= ∅. If βn,i ∈ (µ, 1−µ)
for some µ ∈ (0, 1), then the sequence generated by algorithm 4 converges strongly to

u∗ = P f
Ωx1.

Remark 3 The results presented in this paper generalize among others the results of
Eskandani et al. [18] and Joumande and Moradlou [21] in the following sense:

(1) Apart from the fact that Theorem 3.3 considered a more general class of maps
(Bregman quasi asymptotically nonexpansive multivalued) than those studied in
Eskandani et al. [18] (Bregman relatively nonexpansive multivalued maps), the
Bregman Lipschitz conditions there were dispensed with.

(2) Corollary 4.3 generalizes Theorem 4.1 of Joumande and Moradlou [21] from
single valued relatively nonexpansive mapping to finite family of quasi-ϕ-
asymptotically nonexpansive multivalued mappings.
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