On the frames in Hilbert $C^{\ast}$-modules
Subject Areas : Abstract harmonic analysisM. Rossafi 1 * , M. Ghiati 2 , M. Mouniane 3
1 - LaSMA Laboratory, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
2 - Laboratory of Analysis, Geometry and Applications (LAGA), Department of Mathematics, Ibn Tofail University, Kenitra, Morocco
3 - Laboratory of Analysis, Geometry and Applications (LAGA), Department of Mathematics, Ibn Tofail University, Kenitra, Morocco
Keywords: Frame, operator frame, $g$-frame, $\ast$-frame, $\ast$-$g$-frame, $\ast$-$K$-$g$-frame, Hilbert $C^{\ast}$-modules,
Abstract :
Frame theory has been rapidly generalized and various generalizations have been developed. In this paper, we present a brief survey of the frames in Hilbert $C^{\ast}$-modules, including frames, $\ast$-frames, g-frames, $\ast$-g-frames, $\ast$-$K$-$g$-frame, operator frame and $\ast$-$K$-operator frame in Hilbert $C^{\ast}$-modules. Various proofs are given for some results. We will also provide some new results. Moreover, non-trivial examples are presented.
[1] A. Alijani, Generalized frames with C∗-valued bounds and their operator duals, Filomat. 29 (2015), 1469-1479.
[2] A. Alijani, M. A. Dehghan, ∗-frames in Hilbert C*-modules, UPB Sci. Bull. Ser. A. 73 (2011), 89-106.
[3] L. Arambasic, On frames for countably generated Hilbert C∗-modules, Proc. Am. Math. Soc. 135 (2006), 469-478.
[4] N. Bounader, S. Kabbaj, ∗-g-frames in Hilbert C∗-modules, J. Math. Comput. Sci. 4 (2) (2014), 246-256.
[5] J. B. Conway, A Course in Operator Theory, American Mathematical Society, Rhode Island, 2000.
[6] B. Dastourian, M. Janfada, ∗-frames for operators on Hilbert modules, Wavelets and Linear Algebra. 3 (2016), 27-43.
[7] F. R. Davidson, C∗-algebra by Example, Fields Ins. Monograph, 1996.
[8] I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
[9] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Am. Math. Soc. 72 (1952), 341-366.
[10] M. Frank, D. R. Larson, Frames in Hilbert C∗-modules and C∗-algebra, J. Operator Theory. 48 (2002), 273-314.
[11] D. Gabor, Theory of communications, J. Inst. Electr. Eng. 93 (1946), 429-457.
[12] S. Kabbaj, M. Rossafi, ∗-operator Frame for End∗A(H), Wavelet Linear Algebra. 5 (2) (2018), 1-13.
[13] I. Kaplansky, Modules Over Operator Algebras, Am. J. Math. 75 (1953), 839-858.
[14] A. Khosravi, B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert C∗-modules, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 1-12.
[15] A. Khosravi, B. Khosravi, Fusion frames and g-frames in Hilbert C∗-modules, Int. J. Wavelets. Multiresolution Inf. Process. 6 (2008), 433-446.
[16] E. C. Lance, Hilbert C∗-modules: A Toolkit for Operator Algebraists, Cambridge University Press, 210, 1995.
[17] A. Najati, M. M. Saem, P. Gavruta, Frames and operators in Hilbert C∗-modules, Oper. Matrices. 10 (1) (2016), 73-81.
[18] M. Naroei Irania, A. Nazari, ∗-frames in Hilbert modules over pro-C∗-algebras, J. Linear. Topological. Algebra. 8 (1) (2019), 1-10.
[19] W. L. Paschke, Inner product modules over C∗-algebras, Trans. Am. Math. Soc. 182 (1973), 443-468.
[20] M. Rashidi-Kouchi, On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C∗-modules, J. Linear. Topological. Algebra. 4 (1) (2015), 53-63.
[21] M. Rossafi, S. Kabbaj, ∗-K-g-frames in Hilbert C∗-modules, J. Linear. Topological. Algebra. 7 (1) (2018), 63-71.
[22] M. Rossafi, S. Kabbaj, Operator Frame for End∗A(H), J. Linear. Topological. Algebra. 8 (2) (2019), 85-95.
[23] M. Rossafi, S. Kabbaj, ∗-K-operator Frame for End∗A(H), Asian-Eur. J. Math. 13 (2020), 13:2050060.
[24] Z. Q. Xiang, Y. M. Li, G-frames for operators in Hilbert C∗-modules, Turkish J. Math. 40 (2016), 453-469.
[25] Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C∗-modules, Linear Algebra. Appl. 428 (2008), 992-1000.