مطالعه پاسخ دفاعی و بیوشیمیایی گوجهفرنگی در شرایط آلودگی به گیاه انگلی سس زراعی (Cuscuta campestris Yunck.)
محورهای موضوعی : ژنتیکآسیه سیاهمرگویی 1 * , فاختک طلیعی 2 , مهتاب یزدان دوست 3
1 - گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
2 - گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران.
3 - گروه زراعت و اصلاح نباتات، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران.
کلید واژه: مقاومت, رقم, آنزیم, گوجه فرنگی, آنتی اکسیدان, سس,
چکیده مقاله :
سس (Cuscuta campestris Yunck.) یکی از علفهای هرز مهم انگلی در جهان است. آلودگی به سس باعث کاهش عملکرد محصول و افزایش هزینه های برداشت می شود. ﺑﺮای ﻛﻨﺘﺮل ﻋﻠﻒﻫﺎی ﻫﺮز اﻧﮕلی روشهای ﻣﺨﺘﻠﻔﻲ پیشنهاد ﺷﺪه اﺳـﺖ؛ اما هیچکدام قادر به کنترل موثر این گیاه نیستند. به نظر میرسد استفاده از ارقام مقاوم بهترین گزینه برای دستیابی به این هدف است. در این تحقیق مقاومت 15 رقم گوجهفرنگی به آلودگی سس در شرایط گلخانه مورد بررسی قرار گرفت. از بین این ارقام، دو رقم حساس و مقاوم (به ترتیب سوپراوربانا111 و سوپر چف) انتخاب و میزان فعالیت آنزیم های کاتالاز، گایاکول پراکسیداز، آسکوربات پراکسیداز و همچنین مقدار فنل کل، پرولین، فلاوونویید و قندهای محلول در زمانهای مختلف پس از آلودگی (صفر، 24، 48، 72، 96، 120 و 240 ساعت) مورد بررسی قرار گرفت. نتایج نشان داد که آلودگی به سس زراعی باعث افزایش غلظت آنزیم ها (کاتالاز، گایاکول پراکسیداز، آسکوربات پراکسیداز) در مقایسه با تیمار بدون آلودگی می شود. همچنین مقدار این آنزیمها در رقم مقاوم بیشتر از رقم حساس بود. رقم و زمان نمونه برداری، میزان فنل کل، پرولین، فلاوونوییدها و قندهای محلول را تحت تاثیر قرار داد. میزان فنل کل و فلاوونویید پس از اتصال سس به گوجهفرنگی افزایش یافت و در 240 ساعت پس از اتصال به بیشترین مقدار خود رسید. نتایج این تحقیق نشان میدهد که آلودگی گوجه فرنگی به سس زراعی سبب القای سیستم دفاعی در این گیاه میشود. با توجه اینکه امکان کنترل کامل گیاهان انگلی بدون آسیب به گیاه زراعی وجود ندارد، شناخت مکانیسمهایی دفاعی که با استفاده از آن، ارقام مقاوم در مقابل گیاهان انگلی ایستادگی می کنند، می تواند بسیار کاربردی و مفید باشد.
Dodder is a one of the major parasitic weeds in the world. Dodder infestations reduce crop yield and increase harvesting costs. Different methods have been suggested to control of dodder, but none of them have been able to control these plants reliably. It seems that using resistant varieties is the best option to achieve this goal. In this study, resistance of 15 varieties of tomato to dodder infection (Cuscuta campestris Yunck.) were investigated under greenhouse conditions. Among these varieties, two susceptible and resistant varieties (Supra Urbana and Super Chef, respectively) were selected and catalase, guaiacol peroxidase, ascorbate peroxidase, total phenolic compound, proline, flavonoid and soluble sugars was evaluated at different times after infection (0, 24, 48, 72, 96, 120 and 240 Hours). The results showed that dodder infection increased the enzymes concentration (catalase, guaiacol peroxidase, ascorbate peroxidase) compared to the non- infection treatment. Also, the amount of these enzymes in resistant cultivar were higher than susceptible cultivar. Variety and sampling time affected on total phenol content, proline, flavonoids and soluble sugars. Total phenolic compound and flavonoid levels increased after attaching the dodder to the tomato and reached its highest level at 240 h after attachment. This results indicates the induction antioxidant defence system in tomato under dodder infection. The results of this study show that contamination of tomato with dodder induces the immune system in this plant. Given that it is not possible to perfect control of parasitic weeds without crop damage, it can be very useful to know the defence mechanisms by which cultivars resistant to parasitic plants stand.
Abdul Jaleel, C., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H.J., Chang-Xing, Z., Hong-Bo, S. and Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constrains. Acta Physiologiae Plantarum. 31: 427-436.
Ahmadi Mousavi, E., Nasibi, F., Manouchehri Kalantari, K.H., and Oloumi, H. (2017). Stimulation effect of carrageenan on enzymatic defense system of sweet basil against Cuscuta campestris infection, Journal of Plant Interactions. 12 (1): 286-294.
Albert M., Belastegui-Macadam X. and Kaldenhoff, R. (2006). An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato. The Plant Journal. 48: 548–556.
Albert M., Werner, M., Proksch, P., Fry, S.C. and Kaldenhoff, R. (2004). The cell wall-modifying xyloglucan endotransglycosylase/hydrolase LeXTH1 is expressed during the defence reaction of tomato against the plant parasite Cuscuta reflexa. Plant Biology. 6: 402–407.
Albert, M. 2005. Studien zur Interaktion des Pflanzlichen Parasiten Cuscuta Reflexa mit dem In kompatiblen Wirt Lycopersicum esculentum. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt. (With English Abstract).
Asan, H., and Özen, H. (2016). The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb. subsp. glaucus. Iğdır. Journal of the Institute of Science & Technology. 6 (4): 31-39.
Bates, L.S., Waldern, R.P. and Tear, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.
Banu, N.A., Hoque, A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y. and Murata, Y. (2009). Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology. 166: 146–156.
Berger, S., Sinha, A.K., and Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interaction. Journal of Experimental Botany. 58: 4019–4026.
Bhuiyan, N.H., Selvaraj, G., Wei, Y. and king, J. (2009). Role of lignifications in plant defenses. Plant signaling & Behavior. 4: 158-159.
Candan, N. and Tarhan, L. (2003). The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Science. 165:769–776.
Cecchini, N.M., Monteoliva, M.I. and Alvarez, M.E. (2011). Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiology. 155: 1947–1959.
Chen, Z., Zheng, Z., Huang, J., Lai, Z. and Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior. 4: 493–496.
Chen, C., Wanduragala, S., Becker, D.F. and Dickman, M.B. (2006). Tomato QM- like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Applied Environmental Microbiology. 72:4001–4006.
Dhindsa, R.S. and Motowe, W. (1981). Drought tolerance in two mosses: correlation with enzymatic defense against lipid peroxidation. Journal of Experimental Botany. 32: 79-91.
Fallahpour, F., Koocheki, A.R., Nasiri Mahalati, M. and Falahati Rastgar, M. (2013). Evaluation of resistance of commercial sugar beet cultivars to Dodder weeds (Cuscuta campestris). Iranian Journal of Field Crops Research. 11(2): 208-214.
Fazeli, F., Ghorbanli, M. and Niknam, V. (2006). Effect of drought on water relations, growth and solute accumulation in two Sesame cultivars. Pakistan Journal of Biological Science, 9: 1829-1835.
Fürst, U., Hegenauer, V., Kaiser, B., Korner, M., Welz, M., Albert, A. (2016). Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense. Communicative and Integrative Biology. 9: e1244590–4.
Gao, W.J. (2000). The Experimental Technology of Plant Physiology. World Book Press, Xian, pp: 89-258.
Gill, S.S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machin- ery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48(12): 909–930.
Goldwasser, Y., Lanini, W.H. and Worbel, R.T. (2001). Tolerance of tomato varieties to lespedeza dodder. Weed Science. 49: 520-523.
Halim, V.A., Hunger, A., Macioszck, V., Landgraf, P., Nurnberger, T., Scheel, D. and Rosahlm S. (2004). The oligopeptide elicitor Pep-13 induces salicylic acid-dependent and independent defense reactions in potato. Physiological and Molecular Plant Pathology. 64: 311–318.
Jithesh, S.R., Prashanth, K.R., Sivaprakash, S. and Ajayk, P. (2006). Antioxidative response mechanisms in halophytes: their role in stress defence. Journal of Genetics. 85: 87-97.
Ihl, B. and Miersch, I. (1996). Susceptibility and resistanc of Lycopersicon to infection by Cuscuta. 6th International Parasitic Weed Symposium. Pages 600-605.
Ihl, B., Tutakhil, N., Hagen, A. and Jacob, F. (1988). Studies on Cuscuta Reflexa Roxb.7. Defense-mechanisms of Lycopersicon esculentum Mill. Flora 181, 383–393
In, B.C., Motomura, S., Inamoto, K. and Doi, M. (2007). Multi variant analysis of relation between pre harvest environmental factors, postharvest morphological and physiological factors and vase life of cut Asomi Red Roses. Japanese Society for Horticultural Science. 76: 66-72.
Karimi, H. (2001). Weed Plants in Iran. Academic Publication Center, Tehran. 419 pages.
Kochert, A. (1978). Carbohydrate determination by phenol-sulfuric acid method. In: Hellebust, J.A., Craige, J.S. (eds.), Handbook of Physiological and Biochemical Methods. Cambridge University Press, London. Pp: 95–97.
Koocheki, A., M. Nasiri, V. Jahanbin and Z. Feizabadi. (2004). Diversity of crop varieties. Desert Magazine. 9(1): 49-67.
Krishnan, N., Dickman, M.B. and Becker, D.F. (2008). Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radical Biology and Medicine. 44: 671–681.
Kuzniak, E. (2004). Ascorbate and ascorbate-dependent enzymes in detached tomato leaves under conditions modulating the ascorbate pool. Acta Physiologiae Plantarum. 26(3): 1-6.
Lattanzio V, Lattanzio VMT, Cardinali A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Photochemistry Advanced Research. 2:23–67.
Lehmann, S., Funck, D., Szabados, L. and Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids. 39: 949–962.
Leide, J., Hildebrandt, U., Hartung, W., Riederer, M. and Vogg, G. (2012). Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits. New Phytologist. 194: 402–415.
Lio, S., Weibin, R., Jing, L., Hua, X., Jingan, W., Yubao, G. and Jingguo, W. (2008). Biological control of phytopathogenic fungi by fatty acids. Mycopathologia. 166:93-102.
Liu J., Xie X., Du J., Sun J. and Bai X. (2008). Effects of simultaneous drought and heat stress on Kentucky bluegrass. Journal of Horticultural Science. 115: 190–195.
Löffler, C., Czygan, F. C. and Proksch, P. (1999). Role of indole-3-acetic acid in the interaction of the phanerogamic parasite Cuscuta and host plants. Plant Biology. 1: 613–617.
Mittler, R., Herr, E.H., Orvar, B.L., Van Camp, W., Willekens, H., Inzè, D. and Ellis, B.E. (1999). Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc. Natl. Acad. Sci. USA 96: 14165-14170. Montalbini, P. 1992.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7: 405- 410.
Morkunas, I., Formela, M., Marczak, Ł., Stobiecki, M. and Bednarski, W. (2013). The mobilization of defence mechanisms in the early stages of pea seed germination against Ascochyta pisi. Protoplasma. 250: 63–75.
Nakano, Y. and Asada K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiology. 28: 131-140
Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60: 324-349.
Pradeep, D.P., Greeshma, G.M., Anil Kumar, V.S. and Murugan, K. (2014). Biochemistry of host parasite interaction – cuscuta chinensis lam. on Chromolaena odorata (l) king & h. E robins. A fundamental approach. Journal of Aquatic Biology and Fisheries. 2: 441-450.
Qamar A., Mysore, KS. and Senthil-Kumar, M. (2015). Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Frontiers in Plant Science. 6:503.
Rady A. (2007). Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cellular and Developmental Biology – Plant. 43: 304–317.
Rashed Mohasel, M.H, Mosavi, K, Valiolahpour, R and Haghighi, A. (2007). Principles of Weeds (Translation). University of Mashhad Press. 534.
Rashed Mohasel, M.H., Najafi, H. and Akbarnezhad, M. (2001). Weeds and Their Control (translation). Jahad Daneshgahi Press. 576p.
Raza, S.H. and Murthy, M.S.R. (1988). Air pollution tolerance index of certain plants of Nacharam Industrial Area, Hyderabad. Indian Journal of Botany. 11(1): 91-95.
Rispail N., Dita M.A., Gonzalez-Verdejo C., Perez-de-Luque A., Castillejo M.A., Prats E., Roman B., Jorri´n J. and Rubiales D. (2007). Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist. 173: 703–712.
Runyon, J.B., Mescher, M.C., Felton, G.W. and De Moraes, C.M. (2010). Parasitism by Cuscuta pentagona sequentially induces JA and SA defence path- ways in tomato. Plant Cell Environment. 33: 290-303.
Sadeghi, B., Salari, M., Mirzaei, S., Panjehkeh, N. and Sabbagh, S.K. (2019). Evaluation of biochemical and molecular changes of tomato plants interacted with Alternaria solani. Iranian Journal of Plant Protection Science. 50(1): 49-60.
Sasaki, K., Iwai, T., Miraga, S., Kuroda, K., Seo, S., Mitsuhara, I., Miyasaka, A., Iwamo, M., Ito, H. and Matsui, H. (2004). Ten rice peroxidases redundantly respond to multiple stresses including infection with rice plant fungus. Plant and Cell Physiology. 45: 144-152.
Senthil-Kumar, M. and Mysore, K.S. (2012). Ornithine-delta-amino transferase and proline dehydrogenase genes playaroleinnon-hostdisease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant, Cell and Environment. 35: 1329-1343.
Sarikurkcu, C., Tepe, B., Daferera, D., Polissiou, M. and Harmandar, M. (2008). Studies on the antioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. globosum (Lamiaceae) by three different chemical assays. Bioresources Technology 99: 4239-4246.
Shooryabi, M., Izadi Darbandi, E., Rashed Mohassel, M.H. and Ganjeali, A. (2017). Screening the tolerance of tomato (Lycopersicon esculentum L.) cultivars and landraces to Egyptian broomrape (Orobanche aegyptiaca pers.) under greenhouse conditions. Weed Research Journal. 9(2): 53-62.
Skyba, M., Petijov, L., Kosuth, J., Koleva, D.P., Ganeva, T.G., Kapchina-Toteva, V.M., and Cellrov, E. (2012). Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treat- ment. Journal of Plant Physiology. 169: 955–964.
Sudhakar, C., Lakshmi, A., and Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science. 161:613–619.
Swift, C.E. (2001). Cuscta and Gramicca species: Dodder-A plant parasite. Fort Collins: Colorado State Univerdity Cooperative Extension, TRI River Area.
Szabados, L. and Savoure, A. (2009). Proline: a multifunctional amino acid. Trends in Plant Science. 15: 89-97.
Szabados, L. and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science. 15: 89–97.
Tokasi, S., Bannayan Aval, M., Mashhadi, H.R. and Ghanbari, A.L.I. (2014). Screening of resistance to Egyptlan Broomrape infection in tomato varieties. Planta Daninha. 32(1): 109-116.
Toth, P., Tancik, J.J. and Cagan, L. (2006). Distribution and harmfulness of field dodder (Cuscuta Campestris Yuncker) at sugar beet fields in Slovakia. Zbornik Matice srpske za prirodne nauke.110: 179-185.
Vaughn K.C., Duke, S.O. (1984). Function of polyphenol oxidase in higher plants. Physiologia Plantarum. 60:106–112.
Verbruggen, N., and Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids 35, 753–759.
Verslues, P.E. and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book. 8:e0140.
Xu, P., Chen, F., Mannas, J.P., Feldman, T., Sumner, L.W. and Roossinck, M.J. (2008). Virus infection improves drought tolerance. New Phytologist. 180: 911-921.
Yang-han, L. 1994. Cuscuta species. In R. Labrada and C. parker (Eds.), Weed Management for Developing Countries (pp. 143-147). FAO plant production and protection paper 120. Rome, Italy: Food and Agriculture Organization of the United Nations.
_||_
Abdul Jaleel, C., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H.J., Chang-Xing, Z., Hong-Bo, S. and Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constrains. Acta Physiologiae Plantarum. 31: 427-436.
Ahmadi Mousavi, E., Nasibi, F., Manouchehri Kalantari, K.H., and Oloumi, H. (2017). Stimulation effect of carrageenan on enzymatic defense system of sweet basil against Cuscuta campestris infection, Journal of Plant Interactions. 12 (1): 286-294.
Albert M., Belastegui-Macadam X. and Kaldenhoff, R. (2006). An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato. The Plant Journal. 48: 548–556.
Albert M., Werner, M., Proksch, P., Fry, S.C. and Kaldenhoff, R. (2004). The cell wall-modifying xyloglucan endotransglycosylase/hydrolase LeXTH1 is expressed during the defence reaction of tomato against the plant parasite Cuscuta reflexa. Plant Biology. 6: 402–407.
Albert, M. 2005. Studien zur Interaktion des Pflanzlichen Parasiten Cuscuta Reflexa mit dem In kompatiblen Wirt Lycopersicum esculentum. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt. (With English Abstract).
Asan, H., and Özen, H. (2016). The effect of Cuscuta babylonica Aucher (Cuscuta) parasitism on the phenolic contents of Carthamus glaucus Bieb. subsp. glaucus. Iğdır. Journal of the Institute of Science & Technology. 6 (4): 31-39.
Bates, L.S., Waldern, R.P. and Tear, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.
Banu, N.A., Hoque, A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y. and Murata, Y. (2009). Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology. 166: 146–156.
Berger, S., Sinha, A.K., and Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interaction. Journal of Experimental Botany. 58: 4019–4026.
Bhuiyan, N.H., Selvaraj, G., Wei, Y. and king, J. (2009). Role of lignifications in plant defenses. Plant signaling & Behavior. 4: 158-159.
Candan, N. and Tarhan, L. (2003). The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Science. 165:769–776.
Cecchini, N.M., Monteoliva, M.I. and Alvarez, M.E. (2011). Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiology. 155: 1947–1959.
Chen, Z., Zheng, Z., Huang, J., Lai, Z. and Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior. 4: 493–496.
Chen, C., Wanduragala, S., Becker, D.F. and Dickman, M.B. (2006). Tomato QM- like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Applied Environmental Microbiology. 72:4001–4006.
Dhindsa, R.S. and Motowe, W. (1981). Drought tolerance in two mosses: correlation with enzymatic defense against lipid peroxidation. Journal of Experimental Botany. 32: 79-91.
Fallahpour, F., Koocheki, A.R., Nasiri Mahalati, M. and Falahati Rastgar, M. (2013). Evaluation of resistance of commercial sugar beet cultivars to Dodder weeds (Cuscuta campestris). Iranian Journal of Field Crops Research. 11(2): 208-214.
Fazeli, F., Ghorbanli, M. and Niknam, V. (2006). Effect of drought on water relations, growth and solute accumulation in two Sesame cultivars. Pakistan Journal of Biological Science, 9: 1829-1835.
Fürst, U., Hegenauer, V., Kaiser, B., Korner, M., Welz, M., Albert, A. (2016). Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense. Communicative and Integrative Biology. 9: e1244590–4.
Gao, W.J. (2000). The Experimental Technology of Plant Physiology. World Book Press, Xian, pp: 89-258.
Gill, S.S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machin- ery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48(12): 909–930.
Goldwasser, Y., Lanini, W.H. and Worbel, R.T. (2001). Tolerance of tomato varieties to lespedeza dodder. Weed Science. 49: 520-523.
Halim, V.A., Hunger, A., Macioszck, V., Landgraf, P., Nurnberger, T., Scheel, D. and Rosahlm S. (2004). The oligopeptide elicitor Pep-13 induces salicylic acid-dependent and independent defense reactions in potato. Physiological and Molecular Plant Pathology. 64: 311–318.
Jithesh, S.R., Prashanth, K.R., Sivaprakash, S. and Ajayk, P. (2006). Antioxidative response mechanisms in halophytes: their role in stress defence. Journal of Genetics. 85: 87-97.
Ihl, B. and Miersch, I. (1996). Susceptibility and resistanc of Lycopersicon to infection by Cuscuta. 6th International Parasitic Weed Symposium. Pages 600-605.
Ihl, B., Tutakhil, N., Hagen, A. and Jacob, F. (1988). Studies on Cuscuta Reflexa Roxb.7. Defense-mechanisms of Lycopersicon esculentum Mill. Flora 181, 383–393
In, B.C., Motomura, S., Inamoto, K. and Doi, M. (2007). Multi variant analysis of relation between pre harvest environmental factors, postharvest morphological and physiological factors and vase life of cut Asomi Red Roses. Japanese Society for Horticultural Science. 76: 66-72.
Karimi, H. (2001). Weed Plants in Iran. Academic Publication Center, Tehran. 419 pages.
Kochert, A. (1978). Carbohydrate determination by phenol-sulfuric acid method. In: Hellebust, J.A., Craige, J.S. (eds.), Handbook of Physiological and Biochemical Methods. Cambridge University Press, London. Pp: 95–97.
Koocheki, A., M. Nasiri, V. Jahanbin and Z. Feizabadi. (2004). Diversity of crop varieties. Desert Magazine. 9(1): 49-67.
Krishnan, N., Dickman, M.B. and Becker, D.F. (2008). Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radical Biology and Medicine. 44: 671–681.
Kuzniak, E. (2004). Ascorbate and ascorbate-dependent enzymes in detached tomato leaves under conditions modulating the ascorbate pool. Acta Physiologiae Plantarum. 26(3): 1-6.
Lattanzio V, Lattanzio VMT, Cardinali A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Photochemistry Advanced Research. 2:23–67.
Lehmann, S., Funck, D., Szabados, L. and Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids. 39: 949–962.
Leide, J., Hildebrandt, U., Hartung, W., Riederer, M. and Vogg, G. (2012). Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits. New Phytologist. 194: 402–415.
Lio, S., Weibin, R., Jing, L., Hua, X., Jingan, W., Yubao, G. and Jingguo, W. (2008). Biological control of phytopathogenic fungi by fatty acids. Mycopathologia. 166:93-102.
Liu J., Xie X., Du J., Sun J. and Bai X. (2008). Effects of simultaneous drought and heat stress on Kentucky bluegrass. Journal of Horticultural Science. 115: 190–195.
Löffler, C., Czygan, F. C. and Proksch, P. (1999). Role of indole-3-acetic acid in the interaction of the phanerogamic parasite Cuscuta and host plants. Plant Biology. 1: 613–617.
Mittler, R., Herr, E.H., Orvar, B.L., Van Camp, W., Willekens, H., Inzè, D. and Ellis, B.E. (1999). Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc. Natl. Acad. Sci. USA 96: 14165-14170. Montalbini, P. 1992.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7: 405- 410.
Morkunas, I., Formela, M., Marczak, Ł., Stobiecki, M. and Bednarski, W. (2013). The mobilization of defence mechanisms in the early stages of pea seed germination against Ascochyta pisi. Protoplasma. 250: 63–75.
Nakano, Y. and Asada K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiology. 28: 131-140
Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60: 324-349.
Pradeep, D.P., Greeshma, G.M., Anil Kumar, V.S. and Murugan, K. (2014). Biochemistry of host parasite interaction – cuscuta chinensis lam. on Chromolaena odorata (l) king & h. E robins. A fundamental approach. Journal of Aquatic Biology and Fisheries. 2: 441-450.
Qamar A., Mysore, KS. and Senthil-Kumar, M. (2015). Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Frontiers in Plant Science. 6:503.
Rady A. (2007). Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cellular and Developmental Biology – Plant. 43: 304–317.
Rashed Mohasel, M.H, Mosavi, K, Valiolahpour, R and Haghighi, A. (2007). Principles of Weeds (Translation). University of Mashhad Press. 534.
Rashed Mohasel, M.H., Najafi, H. and Akbarnezhad, M. (2001). Weeds and Their Control (translation). Jahad Daneshgahi Press. 576p.
Raza, S.H. and Murthy, M.S.R. (1988). Air pollution tolerance index of certain plants of Nacharam Industrial Area, Hyderabad. Indian Journal of Botany. 11(1): 91-95.
Rispail N., Dita M.A., Gonzalez-Verdejo C., Perez-de-Luque A., Castillejo M.A., Prats E., Roman B., Jorri´n J. and Rubiales D. (2007). Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist. 173: 703–712.
Runyon, J.B., Mescher, M.C., Felton, G.W. and De Moraes, C.M. (2010). Parasitism by Cuscuta pentagona sequentially induces JA and SA defence path- ways in tomato. Plant Cell Environment. 33: 290-303.
Sadeghi, B., Salari, M., Mirzaei, S., Panjehkeh, N. and Sabbagh, S.K. (2019). Evaluation of biochemical and molecular changes of tomato plants interacted with Alternaria solani. Iranian Journal of Plant Protection Science. 50(1): 49-60.
Sasaki, K., Iwai, T., Miraga, S., Kuroda, K., Seo, S., Mitsuhara, I., Miyasaka, A., Iwamo, M., Ito, H. and Matsui, H. (2004). Ten rice peroxidases redundantly respond to multiple stresses including infection with rice plant fungus. Plant and Cell Physiology. 45: 144-152.
Senthil-Kumar, M. and Mysore, K.S. (2012). Ornithine-delta-amino transferase and proline dehydrogenase genes playaroleinnon-hostdisease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant, Cell and Environment. 35: 1329-1343.
Sarikurkcu, C., Tepe, B., Daferera, D., Polissiou, M. and Harmandar, M. (2008). Studies on the antioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. globosum (Lamiaceae) by three different chemical assays. Bioresources Technology 99: 4239-4246.
Shooryabi, M., Izadi Darbandi, E., Rashed Mohassel, M.H. and Ganjeali, A. (2017). Screening the tolerance of tomato (Lycopersicon esculentum L.) cultivars and landraces to Egyptian broomrape (Orobanche aegyptiaca pers.) under greenhouse conditions. Weed Research Journal. 9(2): 53-62.
Skyba, M., Petijov, L., Kosuth, J., Koleva, D.P., Ganeva, T.G., Kapchina-Toteva, V.M., and Cellrov, E. (2012). Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treat- ment. Journal of Plant Physiology. 169: 955–964.
Sudhakar, C., Lakshmi, A., and Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science. 161:613–619.
Swift, C.E. (2001). Cuscta and Gramicca species: Dodder-A plant parasite. Fort Collins: Colorado State Univerdity Cooperative Extension, TRI River Area.
Szabados, L. and Savoure, A. (2009). Proline: a multifunctional amino acid. Trends in Plant Science. 15: 89-97.
Szabados, L. and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science. 15: 89–97.
Tokasi, S., Bannayan Aval, M., Mashhadi, H.R. and Ghanbari, A.L.I. (2014). Screening of resistance to Egyptlan Broomrape infection in tomato varieties. Planta Daninha. 32(1): 109-116.
Toth, P., Tancik, J.J. and Cagan, L. (2006). Distribution and harmfulness of field dodder (Cuscuta Campestris Yuncker) at sugar beet fields in Slovakia. Zbornik Matice srpske za prirodne nauke.110: 179-185.
Vaughn K.C., Duke, S.O. (1984). Function of polyphenol oxidase in higher plants. Physiologia Plantarum. 60:106–112.
Verbruggen, N., and Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids 35, 753–759.
Verslues, P.E. and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book. 8:e0140.
Xu, P., Chen, F., Mannas, J.P., Feldman, T., Sumner, L.W. and Roossinck, M.J. (2008). Virus infection improves drought tolerance. New Phytologist. 180: 911-921.
Yang-han, L. 1994. Cuscuta species. In R. Labrada and C. parker (Eds.), Weed Management for Developing Countries (pp. 143-147). FAO plant production and protection paper 120. Rome, Italy: Food and Agriculture Organization of the United Nations.