ارزیابی کمی بیابان زایی در دشت کاشان با استفاده از شاخص های حاصل از تصاویر ماهواره ای
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطیزهرا اسلامیان 1 , فاطمه پناهی 2 * , عباسعلی ولی 3 , سید حجت موسوی 4
1 - دانشجوی دکتری بیابانزدایی، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان
2 - استادیار دانشگاه کاشان
3 - دانشیار دانشکده منابع طبیعی و علوم زمین دانشگاه کاشان
4 - استادیار ژئومورفولوژی، گروه جغرافیا و اکوتوریسم، دانشکده منابع طبیعی و علوم زمین
کلید واژه: بیابانزایی, دشت کاشان, مدلسازی, سنجش از دور,
چکیده مقاله :
بیابانزایی یک مشکل زیستمحیطی در سراسر جهان است. دادهها و تکنیک سنجشازدور اطلاعات قابلتوجهی را برای تهیه نقشه و ارزیابی بیابانزایی ارائه میدهد. برای بررسی دقیق بیابانزایی دشت کاشان ابتدا با استفاده از تصاویر ماهواره لندست 5 و 8 نقشه کاربری اراضی برای سال 2008 و 2020 تهیه گردید. سپس با استفاده از دادههای تصاویر ماهوارهای شاخصهای TGSI (شاخص اندازه دانه سطحی خاک) و دادههای Albedo (آل بدو سطح زمین) تهیه، سپس نقشه بیابانزایی DDI مدلهای فضای Albedo-TGSI ایجاد و دقت استخراج این نقشهها بررسی گردید. اراضی بایر و مراتع به ترتیب کاهش 75/7 و 80/1 درصدی داشته این در حالی است که شورهزار، مناطق انسانساخت و اراضی کشاورزی به ترتیب حدود 60/6، 61/1 و 43/1 درصد افزایش نشان داده است. بررسی صحت کلی و ضریب کاپا نقشه کاربری اراضی نشان داد که این شاخصها برای سال 2008 به ترتیب 95% و 91/0 و برای سال 2020 نیز 96 و 94/0 است. همچنین بررسی نقشه بیابانزایی سال 2008 نشان داد که بیشترین مساحت مربوط به کلاس متوسط و کم و بدون بیابانزایی بوده که حدود 69 درصد از دشت کاشان را پوشش داده است. این در حالی است که نتایج بیابانزایی در سال 2020 بیان داشت که کلاسهای بیابانزایی شدید و خیلی شدید حدود 42/55 درصد از مساحت این منطقه را دربر گرفتهاند. این نتایج بیانگر افزایش بیابانزایی و شرایط ایجاد اراضی بیابانی دشت کاشان است. نتایج صحت سنجی نشان داد که دقت کلی و ضریب کاپا نقشه تهیهشده به ترتیب 92/94 % و 52/93 % است. درحالیکه مدل Albedo-TGSI برای مناطق با پوشش گیاهی نسبتاً کم مناسب است. این مطالعه یک مرجع فنی برای بررسی بیابانزایی مناطق مختلف فراهم میکند.
Desertification is a worldwide environmental problem. Remote sensing data and techniques provide significant information for desertification mapping and assessment. In order to investigate the desertification of Kashan plain first, land use maps for 2008 and 2020 were prepared using Landsat satellite images 5 and 8. Then, using the data of satellite images, TGSI indices (surface soil grain size index) and Albedo data (ground surface albedo) were prepared, then the DDI desertification map of Albedo-TGSI space models was created and the accuracy of these maps was checked. Barren lands and pastures have decreased by 7.75% and 1.80%, respectively, while salt marshes, man-made areas, and agricultural lands have increased by 6.60%, 1.61%, and 1.43%, respectively. Examining the overall accuracy and kappa coefficient of the land use map showed that these indicators are 95% and 0.91 for 2008 and 96 and 0.94 for 2020, respectively. Also, the study of the desertification map of 2008 showed that the largest area was related to the medium and low class and without desertification, which covered about 69% of the Kashan plain. Meanwhile, the results of desertification in 2020 stated that severe and very severe desertification classes have covered about 55.42% of the area of this region. These results indicate the increase in desertification and the conditions for the creation of desert lands in the Kashan Plain. The validation results showed that the overall accuracy and kappa coefficient of the prepared map is 94.92% and 93.52%, respectively. While the Albedo-TGSI model is suitable for areas with relatively low vegetation cover. This study provides a technical reference for studying the desertification of different regions.
1) Amiri F, Tabatabaie T. 2022. The effect of land use change/land cover on land surface temperature in the coastal area of Bushehr. Journal of RS and GIS for Natural Resources, 13(2), 130-147. doi: 10.30495/girs.2022.692349.
2) Aramesh M, vali A, Ranjbar A. 2022. Assessment of land cover change and desertification using remote sensing technology in north of Isfahan province (Case study: Kashan, Aran and Bidgol)., 29(2), 146-160. doi: 10.22092/ijrdr.2022.127221.
3) Basso F, Bove E, Dumontet S, Ferrara A, Pisante M, Quaranta G, Taberner M. 2000. Evaluating environmental sensitivity at the basin scale through the use of geographic information systems and remotely sensed data: an example covering the Agri basin (Southern Italy). Catena, 40(1), 19-35.
4) Cao H, Amiraslani F, Liu J, Zhou N. 2015. Identification of dust storm source areas in West Asia using multiple environmental datasets. Science of the Total Environment, 502, 224-235.
5) Chang S, Wu B, Yan N, Davdai B, Nasanbat E. 2017. Suitability assessment of satellite-derived drought indices for Mongolian grassland. Remote Sensing, 9(7), 650.
6) Chang XL, Gao YB. 2003. Quantitative Expression in Regional Desertification Study. Journal of Desert Research, 23(2), 106.
7) Elnashar A, Zeng H, Wu B, Gebremicael TG, Marie K. 2022. Assessment of environmentally sensitive areas to desertification in the Blue Nile Basin driven by the MEDALUS-GEE framework. Science of The Total Environment, 815, 152925.
8) Eskandari H, eskandari damaneh H, Khosravi H, cheraghi M, Adeli Sardooei M. 2023. Assessment of land degradation using Landsat satellite data in the period 2011-2021 (Case Study: Isfahan county). Journal of RS and GIS for Natural Resources, 14(1), 20-24. doi: 10.30495/girs.2023.686944.
9) Eskandari Damaneh H, Khosravi H, Habashi K, Eskandari Damaneh H, Tiefenbacher JP. 2022. The impact of land use and land cover changes on soil erosion in western Iran. Natural Hazards, 110(3), 2185-2205.
10) Eskandari Damneh H, Eskandari Damaneh H, Cheraghi M, Khosravi H, Adeli Sardooei M. 2021. The effect of land use change on the formation of heat islands using remote sensing (Case study: Kerman). Journal of Natural Environment, 74(3), 614-628. doi: 10.22059/jne.2022.327993.2258. (in persian).
11) Feng J, Ding JL, Wei WY. 2018. Research on soil salinization in Weikui Oasis based on the characteristic space of Albedo-MSAVI. J. China Rural Water Hydropower, 2, 147-152.
12) Gharaati Jahrami M, Vali A, Mousavi H, Panahi F, Khosravi H. 2013. monitoring land use changes in the Kashan Plain using remote sensing data, International Scientific-Research Journal of Geodynamics, vol. 4, no. 2, pp. 129. (in persian).
13) Hashem Geloogerdi S, Vali A, Sharifi MR. 2021. Application of TGSI - Albedo feature space model in assessing of desertification status in the center of Khuzestan province. Desert Management, 9(3), 49-66. doi: 10.22034/jdmal.2021.534364.1341. (in persian).
14) Jiang L, Jiapaer G, Bao A, Li Y, Guo H, Zheng G, De Maeyer P. 2019. Assessing land degradation and quantifying its drivers in the Amudarya River delta. Ecological Indicators, 107, 105595.
15) Lamchin M, Lee WK, Jeon SW, Lee JY, Song C, Piao D, Navaandorj I. 2017. Correlation between desertification and environmental variables using remote sensing techniques in Hogno Khaan, Mongolia. Sustainability, 9(4), 581.
16) Lamchin M, Lee JY, Lee WK, Lee EJ, Kim M, Lim CH, Kim SR. 2016. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Advances in Space Research, 57(1), 64-77.
17) Liu Q, Liu G, Huang C. 2018. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series. Journal of arid land, 10(1), 12-26.
18) Ma Z, Xie Y, Jiao J, Wang X. 2011. The construction and application of an Albedo-NDVI based desertification monitoring model. Procedia Environmental Sciences, 10, 2029-2035.
19) Piña RB, Díaz-Delgado C, Mastachi-Loza CA, González-Sosa E. 2016. Integration of remote sensing techniques for monitoring desertification in Mexico. Human and Ecological Risk Assessment: An International Journal, 22(6): 1323-1340. doi:https://doi.org/10.1080/10807039.2016.1169914.
20) Qi X, Jia J, Liu H, Lin Z. 2019. Relative importance of climate change and human activities for vegetation changes on China's silk road economic belt over multiple timescales. Catena, 180, 224-237.
21) Rafei A, Danehkar A, Zandebasiri M, Bagherzadekarimi M. 2022. An analysis of the land use/land cover changes of Shadegan International Wetland in the last two decades. Journal of RS and GIS for Natural Resources, 13(2), 1-19. doi: 10.30495/girs.2022.684329.
22) Reynolds JF, Grainger A, Stafford Smith DM, Bastin G, Garcia‐Barrios L, Fernández RJ, Zdruli P. 2011. Scientific concepts for an integrated analysis of desertification. Land degradation & development, 22(2), 166-183.
23) Robinove CJ, PS Chavez Jr, Gehring D, Holmgren R. 1981. Arid land monitoring using Landsat albedo difference images. Remote Sensing of Environment, 11, 133-156.
24) Rui Z, Yongxiang Z, Shifeng Z. 2010. The application of spatial information technology in modern flood and disasters control. In The 2nd International Conference on Information Science and Engineering (pp. 6994-6997). IEEE.
25) Vendruscolo J, Perez Marin AM, dos Santos Felix E, Ferreira KR, Cavalheiro WC, Fernandes IM. 2021. Monitoring desertification in semiarid Brazil: using the desertification degree index (DDI). Land Degradation & Development, 32(2), 684-698.
26) Verstraete MM, Pinty B. 1996. Designing optimal spectral indexes for remote sensing applications. IEEE Transactions on Geoscience and Remote Sensing, 34(5), 1254-1265.
27) Wei H, Wang J, Cheng K, Li G, Ochir A, Davaasuren D, Chonokhuu S. 2018. Desertification information extraction based on feature space combinations on the Mongolian plateau. Remote Sensing, 10(10), 1614.
28) Wessels KJ, Van Den Bergh F, Scholes RJ. 2012. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote sensing of Environment, 125, 10-22.
29) Yu X, Zhuo Y, Liu H, Wang Q, Wen L, Li Z, Wang L. 2020. Degree of desertification based on normalized landscape index of sandy lands in inner Mongolia, China. Global Ecology and Conservation, 23, e01132.
30) Zeng YN, Feng Z, Xiang N. 2006. Albedo-NDVI space and remote sensing synthesis index models for desertification monitoring. Scientia Geographica Sinica, 26(1), 75.
31) Zolfaqhari F, Abdulahi V. 2022. Determining the intensity of desertification based on spectral indices using Sentinel-2 images) Study area: Sistan and Baluchistan Province, Journal of Remote Sensing and Geographical Information System in Natural Resources, 108-126 :(1)13.