بررسی تغییرات جزایر حرارتی سطحی با استفاده از شاخصهای پوشش گیاهی (مطالعه موردی: شهرستان سرپلذهاب)
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطی
1 - استادیار دانشکده جغرافیا و علوم محیطی دانشگاه حکیم سبزواری
کلید واژه: شهرستان سرپلذهاب, سنجش از دور, لندست, تغییرات دمایی, پوششگیاهی,
چکیده مقاله :
تحقیق حاضر به منظور اندازهگیری تغییرات جزایر گرمایی سطحی شهری در 3 مقطع زمانی 1984، 1998 و 2016 با استفاده از شاخصهای پوشش گیاهی، شاخص ساخت و ساز شهری و شاخص دمای سطح زمین انجام شده است. بدین منظور پس از تعیین حدود منطقه، مراحل پیشپردازش شامل تصحیحات رادیومتریک و اتمسفری تصاویر، چینش باندها، موزاییک و برش تصاویر بر اساس محدوده مطالعاتی بر روی تصاویر سنجنده TM و ETM+ لندست 8 صورت گرفت. سپس شاخصهایNDVI، SAVI و NDBI بر روی تصاویر اعمال شد و از طریق تفاضل تصاویر، مبادرت به پایش زمانی و مکانی پوشش گیاهی گردید و تغییرات در قالب سه نوع کاهشی، افزایشی و بدون تغییر مورد بررسی قرار گرفت. همچنین جهت محاسبه شاخص (LST) از باندهای حرارتی 10 و 11 لندست 8 و باند 6 لندست 5 استفاده شد.نتایج نشان دادکه دو شاخص NDVI و SAVI روند کاهشی داشتهاند ولی شاخص NDBI روند افزایشی داشته است. بطوری که میزان تغییرات در بازه اول از 77 درصد به 63 درصد در شاخص SAVIودر شاخص NDVI از 45 درصد به 41 درصد کاهش پیدا کرده در حالی که شاخص NDBI در بازه اول 51 درصد بوده و در بازده دوم به 57 درصد افزیش پیدا کرده است. در همین بازه، شاخص LST روندی ناهمگون داشته ولی به نظر می رسد توزیع این شاخص از حالت گسترده به حالت لکه ای تغییر یافته است بدین معنی که امواج حرارتی در آینده بصورت موضعی در مناطقی از شهر که دچار مشکل تهویه هستند رخ داده و می تواند کیفیت زندگی را کاهش داده و زمینه برای بیماری های مرتبط را فراهم سازد. بنابراین مناطق ساخته شده شهری موجب تشدید جزایر شهری و تراکم پوشش گیاهی باعث تعدیل جزایر حرارتی شهری گردیده است.
The present research was conducted in order to measure the changes of urban surface heat islands in 3 time periods of 1984, 1998 and 2016 using vegetation indices, urban built-up areas index and land surface temperature index. For this purpose, after determining the boundaries of the area, pre-processing steps including radiometric and atmospheric corrections of images, arrangement of bands, mosaicing and cropping of images based on the study area were carried out on TM and ETM+ Landsat 8 sensor images. Then, NDVI, SAVI and NDBI indexes were applied on the images and through the difference of the images, temporal and spatial monitoring of vegetation cover was started and changes were studied in the form of three types of decrease, increase and no change. Also, to calculate the surface temperature index (LST), thermal bands 10 and 11 of Landsat 8 and band 6 of Landsat 5 were used. The results showed that the two indices NDVI and SAVI had a decreasing trend, but the NDBI index had an increasing trend so that the amount of changes in the first period decreased from 77% to 63% in the SAVI index and in the NDVI index from 45% to 41%, while the NDBI index was 51% in the first period and increased to 57% in the second period. In the same period, the LST index has had a heterogeneous trend, but it seems that the distribution of this index has changed from a widespread state to a patchy state, which means that in the future, heat waves will occur locally in areas of the city that have ventilation problems and It can reduces the quality of life and provides the basis for related diseases. Therefore, built-up urban areas have intensified urban heat islands and the density of vegetation has moderated urban heat islands.
1. Small CMiller R B. 1999. Monitoring the urban environment from space. Columbia University, Palisades, NY, USA: Lamont Doherty Earth Observatory.
2. Buhaug HUrdal H. 2013. An urbanization bomb? Population growth and social disorder in cities. Global environmental change, 23(1): 1-10.
3. Azizpour MEsma'eelpour N. 2009. Change of agricultural land use and relative increase of temperature in Yazd due to its rapid growth. Journal of Geography and Regional Development, 7(12).
4. Shamsipur A S, Azizi A H, Karimi Ahmadabad MMoqbel M. 2014. Study of the temperature pattern of physical surfaces in different climatic conditions. Natural Geography Research, 1(1): 76-81.
5. Packialakshmi S, Ambujam NMahalingam S. 2010. Emerging land use changes and their effects on groundwater: a study of the Mambakkam mini watershed, southern suburban area of Chennai, India. Journal of Environmental Research and Development, 5(2): 340-349.
6. Weng QLu D. 2009. Landscape as a continuum: an examination of the urban landscape structures and dynamics of Indianapolis City, 1991–2000, by using satellite images. International Journal of Remote Sensing, 30(10): 2547-2577.
7. Weng Q. 2001. A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International journal of remote sensing, 22(10): 1999-2014.
8. Rezazadeh M, Irannejad PShao Y. 2013. Climatology of the Middle East dust events. Aeolian Research, 10: 103-109.
9. Li F, Jackson T J, Kustas W P, Schmugge T J, French A N, Cosh M HBindlish R. 2004. Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote sensing of environment, 92(4): 521-534.
10. Amiri R, Weng Q, Alimohammadi AAlavipanah S K. 2009. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote sensing of environment, 113(12): 2606-2617.
11. Zhang H, Yin Y, An H, Lei J, Li M, Song JHan W. 2022. Surface urban heat island and its relationship with land cover change in five urban agglomerations in China based on GEE. Environmental Science and Pollution Research, 29(54): 82271-82285.
12. Zhang Y, Odeh I ORamadan E. 2013. Assessment of land surface temperature in relation to landscape metrics and fractional vegetation cover in an urban/peri-urban region using Landsat data. International Journal of Remote Sensing, 34(1): 168-189.
13. Kafy A-A, Al Rakib A, Akter K S, Rahaman Z A, Mallik S, Nasher N R, Hossain M IAli M Y. 2021. Monitoring the effects of vegetation cover losses on land surface temperature dynamics using geospatial approach in Rajshahi city, Bangladesh. Environmental Challenges, 4: 100187.
14. Carlson T N, Gillies R RPerry E M. 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote sensing reviews, 9(1-2): 161-173.
15. Gillies R, Kustas WHumes K. 1997. A verification of the'triangle'method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. International journal of remote sensing, 18(15): 3145-3166.
16. Lo C P, Quattrochi D ALuvall J C. 1997. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International journal of Remote sensing, 18(2): 287-304.
17. Gallo K POwen T W. 1998. Assessment of urban heat Islands: A multi‐sensor perspective for the Dallas‐Ft. worth, USA region. Geocarto International, 13(4): 35-41.
18. Goward S N, Xue YCzajkowski K P. 2002. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote sensing of environment, 79(2-3): 225-242.
19. Liu J, Ren Y, Tao HShalamzari M J. 2021. Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China. Remote Sensing, 13(19): 3824.
20. Shakiba A, Firoozabadi P, Ashourloo DNamdari S. 2009. Analysis of relationship between land use/cover and urban heat island, using ETM+.
21. Sadeginia A, Alijani B, Zeaiean F PKhaledi S. 2013. Application of Spatial autocorrelation techniques in analyzing the heat island of Tehran.
22. Ahmadi M, Ashourloo DNarangifard M. 2012. Temporal-spatial changes of thermal and land use patterns of Shiraz city using TM & ETM sensor data. Iranian Journal of Remote Sensing & GIS, 4(4): 55-68.
23. Jahanbakhsh S, Zahedi NValizadeh Kamran K. 2011. Calculation of land surface temperature using SEBAL method and decision tree in GIS RS, in the central part of Maragheh region. Geography and Planning, 16(38): 19-42.
24. Mansourmoghaddam M, Rousta I, Zamani M, Mokhtari M H, Karimi Firozjaei MAlavipanah S K. 2021. Study and prediction of land surface temperature changes of Yazd city: Assessing the proximity and changes of land cover. Journal of RS and GIS for Natural Resources, 12(4): 1-27.
25. Kakehmami A, Ghorbani A, Asghari Sarasekanrood S, Ghale EGhafari S. 2020. Study of the relationship between land use and vegetation changes with the land surface temperature in Namin County. Journal of RS and GIS for Natural Resources, 11(2): 27-48.
26. Hashemi Dareh Badami S, Nouraeisefat I, Karimi SNazari S. 2015. Development trend analysis of urban heat island regarding land use/cover changes using time series of landSat images. Journal of RS and GIS for Natural Resources, 6(3): 15-28.
27. Hashemi M, AlaviPanah KDinarvandi M. 2013. Evaluation of spatial distribution of surface temperature in urban environment using thermal remote sensing. Journal of Environmental Studies, 1(1): 81-92.
28. Van der Meer F. 2012. Remote-sensing image analysis and geostatistics. International Journal of Remote Sensing, 33(18): 5644-5676.
29. Zhao H, Tan J, Ren ZWang Z. 2020. Spatiotemporal characteristics of urban surface temperature and its relationship with landscape metrics and vegetation cover in rapid urbanization region. Complexity, 2020.
30. Veisi V, Assessment of land degradation based on biophysical indicators using geospatial data (study sample: NawaKooh forests). 2016, Kashan University.: Kashan, Iran.
31. Rundquist D C, Lawson M P, Queen L PCerveny R S. 1987. The Relationship Between Summer‐Season Rainfall Events and Lake‐Surface Area 1. JAWRA Journal of the American Water Resources Association, 23(3): 493-508.
32. Ghayoumi Mohammadi H. 2000. Warning about converting agricultural lands to urban: A case study of Isfahan. Soil and Water Sciences, 14(2): 154-163.
33. Kabiri FAmoshahi N, Investigating the strategies for preserving agricultural lands and gardens in the process of urban development: a case study of Khomeini Shahr, in Annual Conference on Architectural, Urban Planning and Urban Management Research, Isfahan, Iran. 2016.
34. Morawitz D F, Blewett T M, Cohen AAlberti M. 2006. Using NDVI to assess vegetative land cover change in central Puget Sound. Environmental monitoring and assessment, 114(1): 85-106.
35. Rosenfeld A H, Akbari H, Bretz S, Fishman B L, Kurn D M, Sailor DTaha H. 1995. Mitigation of urban heat islands: materials, utility programs, updates. Energy and buildings, 22(3): 255-265.
36. Akbari HKolokotsa D. 2016. Three decades of urban heat islands and mitigation technologies research. Energy and buildings, 133: 834-842.
37. Dos Santos A R, de Oliveira F S, da Silva A G, Gleriani J M, Gonçalves W, Moreira G L, Silva F G, Branco E R F, Moura M Mda Silva R G. 2017. Spatial and temporal distribution of urban heat islands. Science of the Total Environment, 605: 946-956.
38. Guha S, Govil HMukherjee S. 2017. Dynamic analysis and ecological evaluation of urban heat islands in Raipur city, India. Journal of Applied Remote Sensing, 11(3): 036020.
39. Hassan T, Zhang J, Prodhan F A, Pangali Sharma T PBashir B. 2021. Surface urban heat islands dynamics in response to lulc and vegetation across south asia (2000–2019). Remote Sensing, 13(16): 3177.