فیتوسنتز نانوذرات نقره پایدار با استفاده از عصاره آبی گونه Salvia rhytidea Benth. و مقایسه عملکرد ضدمیکروبی آن با عصاره طبیعی گیاه
محورهای موضوعی : اکولوژی محیطیامید عزیزیان شرمه 1 , ابراهیم ملاشاهی 2 , مژگان طاهریزاده 3
1 - دانشجوی دکتری ، گروه شیمی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران
2 - استادیار، گروه شیمی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران
3 - دانشجوی دکتری، گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد کرمان، کرمان، ایران
کلید واژه: فعالیت ضدمیکروبی, نانوذرات نقره, فیتوسنتز, گیاه مریم گلی تفتانی,
چکیده مقاله :
مطالعه حاضر اولین گزارش از فیتوسنتز نانوذرات نقره از عصاره آبی ریشه گیاه دارویی مریم گلی تفتانی (Salvia rhytidea Benth.) و مقایسه عملکرد ضدمیکروبی آن با عصاره طبیعی گیاه می باشد. نمونههای گیاهی در مرحله گلدهی در خردادماه سال 1396 از ارتفاعات کوه تفتان (طول 60 درجه و 44 دقیقه شرقی و عرض 28 درجه و 33 دقیقه شمالی و در ارتفاع 1394 متر بالاتر از سطح دریا) جمعآوری شدند. پس از تهیه عصاره به روش خیساندن، نانوذرات نقره به روش زیستی سنتز شدند. سپس پارامترهایی همچون pH واکنش، غلظت نیترات نقره و زمان واکنش مورد مطالعه قرار گرفته و بهینه سازی شدند. پس از بررسی خصوصیات نانوذرات توسط میکروسکوپ الکترونی گذاره و پراش پرتو ایکس، خاصیت ضدمیکروبی آن ها علیه باکتری های سالمونلا تیفی موریوم، اشرشیاکلی، باسیلوس سرئوس و استافیلوکوکوس اورئوس و قارچ های آسپرژیلوس فلاووس و پنی سیلیوماکسپانسوم به دو روش انتشار از دیسک و حداقل غلظت مهار کننده رشد بررسی شد و با فعالیت ضدمیکروبی عصاره آبی مقایسه شد. نانوذرات به دست آمده دارای ماکسیمم جذب در طول موج 415-400 نانومتر، اندازه میانگین 20-25 نانومتر، شکل کروی و یکنواخت بودند. بررسی فعالیت ضدمیکروبی نشان داد که اثرات ضدمیکروبی وابسته به غلظت بوده و در غلظت های یکسان، نانوذرات دارای اثر مهارکنندگی به مراتب بیشتری در مقایسه با عصاره آبی بوده اند، به گونه ای که در غلظت 50 میکروگرم بر میلی لیتر، بیشترین اثر مهارکنندگی علیه باکتری استافیلوکوکوس اورئوس (19 میلی متر) و قارچ آسپرژیلوس فلاووس (19 میلی متر) مشاهده شد. بر اساس نتایج به دست آمده گیاهان دارای پتانسیل بالایی جهت سنتز زیستی نانوذرات بوده که به عنوان میکروب زدا می توانند در صنایع گوناگون مورد استفاده قرار گیرند.
1.Amiri, H. 2007. Quantitative and qualitative changes of essential oil of Salvia bracteata Bank et Sol. in different growth stages. DARU-Journal of Faculty of Pharmacy, 15: 79-82.
2.Amiri, H. 2012. Investigation of chemical compounds and antioxidant activity of essential oil and methanolic extracts of Salvia multicaulis, Journal of Medicinal Plant, 8: 111-117. (In Persian)
3.Asadi, M., Khosravi-Darani, K., Mortazavi, A., Hajseyed Javadi, N., Azadnia, E. and Kiani Harchegani, A. 2014. Antimicrobial effect of silver nanoparticles produced by chemical reduction on Staphylococcus aureus and Escheirchia coli. Iranian Journal of Nutrition Sciences & Food Technology, 8 (4):83-92 (In Persian)
4.Ashiri, S., Safari, J. 2013. Synthesis of gold and silver nanoparticles in plant substrates and their application. Nanotechnology, 1(186): 12-15. (In Persian)
5.Ankamwar., B. 2010. Biosynthesis of Gold Nanoparticles (Green-Gold) Using Leaf Extract of Terminalia catappa. E-Journal of Chemistry, 7(4):1334-1339.
6.Aubourg, S.P., Piñeiro, C., Gallardo, J. M. and Barros-Velazquez, J. 2005. Biochemical changes and quality loss during chilled storage of farmed turbot (Psetta maxima). Food Chemistry, 90(3): 445-52.
7.Azizian Shermeh, O, Valizadeh, J., Noroozifar, M. and Qasemi, A. 2016 a. Investigation the antimicrobial activity of silver nanoparticles biosynthesis by aqueous extract of Sambucus ebulus L. Journal of Ilam University of Medical Sciences, 25(4): 92-108. (In Persian)
8.Azizian shermeh, O., Valizadeh, J., Noroozifar, M., Ghasemi, A. and Valizadeh, M. 2016 b. Optimization, characterization and anti-microbial activity of gold nanoparticles biosynthesized using aqueous extract of Sambucus ebulus L. Eco-phytochemical Journal of Medicinal plants, 1:1-18. (In Persian)
9.Azizian Shermeh, O., Einali, A. and Ghasemi, A. 2017 a. Rapid biologically one-step synthesis of stable bioactive silver nanoparticles using Osage orange (Maclura pomifera) leaf extract and their antimicrobial activities. Advanced Powder Techmology, 28: 3164-3171
10.Azizian Shermeh, O., Valizadeh, M., Valizadeh, J., Taherizadeh, M. and Beigomi, M. 2017 b. Phytochemical investigation and phytosynthesis of silver nanoparticles using aqueous extract of Capparis spinosa L. Journal of Modares Biological Sciences (JMBS), 8 (1): 80-90 (In Persian)
11.Azizian Shermeh, O., Taherizadeh, M., Valizadeh, M., Valizadeh, J., Qasemi, A. and Naroei, B. 2017 c. Optimization, characterization, and investigation of antibacterial activity of gold Nanoparticles biosynthesized by aqueous extract of Seidlitzia rosmarinus. Qom Univercity of Medical Sciences Journal, 11 (5): 38-52 (In Persian)
12.Azizian Shermeh, O., Taherizadeh, M., Valizadeh, M. and Qasemi, A. 2018 a. Robial and antioxidant activities and Determining Phenolic and flavonoid contents of the extracts of five species from different families of the medicinal plants grown in Sistan and Baluchestan Province. Journal of Fasa University of Medical Sciences, 7(4): 465-479
13.Azizian Shermeh, O., Valizadeh, M., Taherizadeh, M. and Beigomi, M. 2018 b. Phytochemical investigation and phytosynthesis of eco-friendly stable bioactive gold and silver nanoparticles using petal extract of saffron (Crocus sativus L.) and study of their antimicrobial activities. Applied Nanoscience. https://doi.org/10.1007 /s13204-019-01059-5
14.Azizian Shermeh, O., Taherizadeh, M., Valizadeh, M., Ghasemi, A., Beigomi, M. and Kamali Deljoo, A. 2019. The study of antimicrobial effect of silver nanoparticles biosynthesized by the leaf aqueous extract of kelussia odoratissima mozaff. against some pathogenic microbes with food sources. Journal of Food Technology and Nutrition, 16 (1): 31-48 (In Persian)
15.Basiri, Sh. 2011. Investigation of the effect of temperature and air velocity in the dryer on the amount and quality of essential oil of Thymus. Innovation in Food Science and Technology (Journal of Food Science and Technology), 3(4): 75-85. (In Persian)
16.Cao, Y.W.C., Jin, R.C. and Mirkin, C.A. 2002. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 297: 1536-1540.
17.Chaloupka, K., Malam, Y. and Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28: 580-588.
18.Chaloupka, K., Malam, Y. and Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28 (11): 580-588.
19.Clara, S., Donatella, D. and Sossio, C. 2011. Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12): 1766-82. 9.
20.Cho, K.H., Park, J.E., Osaka, T. and Park, S. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta, 51: 956-960.
21.Christian, P., Von der Kammer, F., Baalousha, M. and Hofmann, T. 2008. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology, 17(5): 326-343.
22.Chung, N., Chu, P. 2010. Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa L.) during storage. Food Chemistry, 110: 16248-1625.
23.Ding, C.K., Chachin, K., Ueda, Y. and Imahori, Y. 1998. Purification and properties of polyphenol oxidase from loquat fruit. Journal of Agricultural Food Chemistry, 46(10): 4144 - 49.
24.Dwivedi, A.D. and Gopal, K. 2010. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A, 369(3): 27–33.
25.Ebrahimi, A., Khayami, M. and Nejati, V. 2012. Comparison of antimicrobial effect of different parts of Quercus persica against Escherichia coli O157:H7. The Horizon of Medical Scinces. 17 (4): 11-17 (In Persian)
26.Ebrahimi Asl, S. and Zarei, A. 2015. Synthesis and characterization of ag/chitosan nanobiocomposite by chemical method and investigation of its application for food packaging. Journal of Food Microbiology, 2(2): 21-31 (In Persian)
27.Elmageed, M.A. and Hussein, B. 2008. Cytotoxicity and antimicrobial activity of Salvia officinalis L. flowers, Sudan Journal of Medical Sciences, 3(2): 127-132
28.Etemadi, M., Mohebbi-Kalhori, D., Azizian Shermeh, O. and Qasemi, A. 2017. Phytosynthesis of silver nanoparticles using aqueous extract of Camellia sinensis L. and study of their antibacterial activities, Journal of Fasa University of Medical Sciences, 7(1): 39-52
29.Farhat, M.B., Landoulsi, A., Chaouch-Hamada, R., Sotomayor, J.A. and Jordn, M.J. 2013. Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats. Industrial Crops and Products, 49: 904-14.
30.Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y. and Chi, Y. 2009. Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chemistry, 115(1): 66-70.
31.Feng, Q.L., Wu, J., Chen, G.O., Cui, F. Z., Kim, T.N. and Kim, J.O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4): 662-8.
32.Fernández, A., Soriano, E., López-Carballo, G., Picouet, P., Lloret, E., Gavara, R. and Hernandez-Munoz, P. 2009. Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Research International, 42(8): 1105-12.
33.Fernández, A., Picouet, P. and Loret, E. 2010. Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. International Journal of Food Microbialogy, 142(1-2): 222-8.
34.Furno, F., Morley, K.S., Wong, B., Sharp B.L., Arnold, P.L., Howdle, S.M., Bayston, R., Brown, P.D., Winship, P.D. and Reid, H.J. 2004. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, 54(6): 1019-24.
35.Govindaraju, K., Tamilselvan, S., Kiruthiga, V. and Singaravelu, G. 2010. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides, 3(1): 394-399.
36.Gardea-Torresdey, J.L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S. and Jose-Yacaman, M. 1999. Gold nanoparticles obtained by bio-precipitation from gold (iii) solutions. Journal of Nanoparticle Research, 1(3): 397-404.
37.Heidarpour, F., Wan, A.b., Karim Ghani, W. A., Fakhru’lRazi, A., Sobri, S., Heydarpour, V., Zargar, M. and Mozafari, M. R. 2010. Complete removal of pathogenic bacteria from drinking water using nano silver-coated cylindrical polypropylene filters. Clean Technologies and Environmental Policy, 13(3): 499-507.
38.Jassbi, A., Zare, S., Firuzi, O. and Xiao, J. 2015. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochemy Reviews. Available from: http://dx.doi.org/10.1007 /s11101-015-9427-z.
39.Jassbi, A.R., Eghtesadi, F., Hazeri, N., Ma”somi, H., Valizadeh, J., Chandran J. N., Schneider, B. and Baldwin, I.T. 2017. The roots of Salvia rhytidea: a rich source of biologically active diterpenoids. Natural Product Research, 31(4): 477-481.
40.Kaushik Thakkar, N., Snehit Mhatre, S. and Rasesh Parikh, Y. 2010. Biological synthesis of metallic nanoparticles. nanomedicine, 6: 257-262.
41.Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J. and Srinivasan, K. 2011. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc, 79: 594-98.
42.Kim, J. S, Kuk, E., Yu, K. N., Kim, J-H., Park, S. J., Le, H.J., Kim, S.H., Park, Y.K., Park, Y. H., Hwanq, C.Y., Kim, Y.K., Lee, Y.S., Jeonq, D.H. and Cho, M.H. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1): 95-101.
43.Mazaraie, A., Mousavi-Nik, S.M. and Fahmideh, L. 2018. Assessments of phenolic, flavonoid and antioxidant activity of aqueous, alcoholic, methanol and acetone extracts of thirteen medicinal plants. Nova Biologica Reperta, 4 (4): 299-309. (In Persian)
44.Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A. and Schultz, S. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 116(15): 6755-59.
45.Mohasseli, T. and Pourseyyedi, Sh. 2015. Green synthesis and characterization of silver nanoparticles using seed aqueous extract of Sesame. Biotechnology Tarbiat Modares University, 1(6): 10-20. (In Persian)
46.Monteiro, D.R., Gorup, L.F., Takamiya, A.S., Ruvollo-Fiho, A.C., Carmago, E.R. and Barbosa, D.B. 2009. The growing importance of materials that prevent microbial adhesion. International Journal of Antimicrobial Agents, 34(2): 103-10.
47.Oliveria, J.R.D., Figueiredo Vilela, P.D.G., Aguiar Almeida, R.B.D., Oliveira, F.E.D., Talgo Carvalho, C.A., Afonso Camargo, S.E., Cardoso Jorge, A.O. and Oliveira, L.D.D. 2019. Antimicrobial activity of noncytotoxic concentrations of Salvia officinalis extract against bacterial and fungal species from the oral cavity. General dentistry, 434: 22-26.
48.Omidbaigi, R. 2005. Approaches to the production and processing of medicinal plants, Behnashr Publications, Mashhad, 1: 347-8.
49.Özogul, F., Polat, A. and Özogul, Y. 2004. The effects of modified atmosphere packaging and vacuum packaging on chemical, sensory and microbiological changes of sardines (Sardina pilchardus). Food Chemistry, 85(1): 49-57.
50.Özyurt, G., Kuley, E., Özkütük, S. and Özogul, F. 2009. Sensory, microbiological and chemical assessment of the freshness of red mullet (Mullus barbatus) and goldband goatfish (Upeneus moluccensis) during storage in ice. Food Chemistry, 114(2): 505-510.
51.Philip, D. 2009. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009; 73: 374-381.
52.Philip, D. 2010. Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E, 42(5); 1417–24.
53.Praveen Kumar, K., Paul, W., Chandra, P. and Sharma, P. 2007. Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility. Process Biochemistry, 46: 2007-2013.
54.Rimal Isaac, SR., Sakthivel, G. and Murthy, Ch. 2013. Green synthesis of gold and silver nanoparticles using averrhoa bilimbi fruit extract. Journal of Nanotechnology, 128(5): 89-101.
55.Salimpour, F., Mazooji, A. and Akhoondi Darzikolaei, S. 2011. Chemotaxonomy of six Salvia species using essential oil composition markers. Journal of Medicinal Plants Research, 5(9):1795-1805.
56.Salmanpour Ahmadi, H. A., Manouchehri, H. and Safari, R. 2016. Evaluation chitosan nanoparticles and nano-encapsulated thyme effect on microbial spoilage of Rainbow trout (Oncorhynchus mykiss) fillet inoculated with Listeria monocytogenes. Journal of Fisheries (Iranian Journal of Natural Resources), 68 (4): 577-587 (In Persian)
57.Shafizadeh, F. 2002. Medicinal plants of lorestan province, Hayian Publisher, Tehran.
58.Shankar, SS., Rai, A., Ahmad, A. and Sastry, M. 2002. Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275: 496-502.
59.Shekarforoush, S.S., Razavi Rohani, S.M., karim, G., Kiaie S.M.M., Rokni, N. and Abbasvali, M. 2013. Study on the overview on food borne bacteria in food with animal origin in Iran; Part three; Seafood. Journal of Food Hygine, 2(4): 15-32 (In Persian)
60.Shenya, D.S., Mathewa, J. and Philip, D. 2011. Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardiumoccidentale. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79: 254-262.
61.Singh, P., Garg, A., Pandit, S., Mokkapati, V.R.S.S and Mijakovic, D. 2018. Antimicrobial effects of biogenic Nanoparticles. nanomaterials, 8, 1009; DOI: 10.3390/nano8121009.
62.Stobie, N., Duffy, B., McCormack, D. E., Colreavy, J., Hidalgo, M., McHale, P. and Hinder, S.J. 2008. Prevention of Staphylococcus epidermidis biofilm formation using a low - temperature processed silver - doped phenyltriethoxysilane sol - gel coating. Biomaterials, 29(8): 963–9.
63.Salari. S., Bakhshi, T., Sharififar, F., Naseri, A. and Ghasemi Nejad Almani, P. 2016. Evaluation of antifungal activity of standardized extract of Salvia rhytidea Benth. (Lamiaceae) against various Candida isolates. . Journal de Mycologie Médicale, 26(4): 323-330. Doi: 10.1016/j.mycmed.
64.Vallet-Regí, M., González, B. and Izquierdo-Barba, I. 2019. Nanomaterials as Promising alternative in the infection treatment. Internatioanl Journal of Molecular Sciences. 20, 3806; doi: 10.3390/ijms20153806
65.Vijayaraghavana, K., Mahadevana, A., Sathishkumara, M., Pavagadhia, S. and Balasubramaniana, R. 2011. Biosynthesis of Au (0) from Au (III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chemical Engineering Journal, 167: 223–227.
66.Walker, J.B., Sytsma, K.J. 2007. Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the lever. Annals of Botany, 100(2):375-391.
67.Wang, L., Hu, Ch. and Shao, L. 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future, International Journal of Nanomedicine, 12: 1227-1249.
68.Wang, Y., He, X., Wang, K., Zhang, X. and Tan, W. 2009. Barbated skull cup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids and surfaces B, Bio interfaces, 73: 75-79.
69.Yong Song, J., Hyeon-Kyeong, J. and Beom Soo, K. 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochemistry, 44: 1133–1138.
70.Zahabi, Z.F., Sharififar, F., Almani, P.G.N. and Salari, S. 2020. Antifungal activity of different fractions of Salvia rhytidea Benth. as a valuable medicinal plant against various species of Candida in Kerman Province, southeast Iran, Gene Reports, https://doi.org/ 10.1016/j.genrep. 100624.
71.ZandiNavgaran, Kh., Naseri, L. and Esmaiili, M. 2014. Effect of packaging material containing nano-silver and silicate clay particles on postharvest quality attributes of sweet cherry cv. Syaahe Mashhad, Journal of Food Research, 24(1): 89-102 (In Persian)
72.Zarei, M., Jamnejad, A. and Khajehali, E. 2014. Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur Journal of Microbiology, 7(1): 1-11.
73.Zarei, Z., Razmjoue, D. and Karimi, J. 2018. Investigating the bioavailability and antibacterial effect of silver nanoparticles produced by (Ferulago angulate Boiss.) extract. Journal of Jahrom University of Medical Scinces, 16 (1): 24-3462. (In Persian)
74.Zarei, G. and Morovvati Sharifabad, A. 2017. Essential oil composition of Salvia eremophila Boiss. In different stages of plant growth in Yazd province. Eco-phytochemical Journal of Medicinal Plants, 4(4): 74-84 (In Persian)
_||_
1.Amiri, H. 2007. Quantitative and qualitative changes of essential oil of Salvia bracteata Bank et Sol. in different growth stages. DARU-Journal of Faculty of Pharmacy, 15: 79-82.
2.Amiri, H. 2012. Investigation of chemical compounds and antioxidant activity of essential oil and methanolic extracts of Salvia multicaulis, Journal of Medicinal Plant, 8: 111-117. (In Persian)
3.Asadi, M., Khosravi-Darani, K., Mortazavi, A., Hajseyed Javadi, N., Azadnia, E. and Kiani Harchegani, A. 2014. Antimicrobial effect of silver nanoparticles produced by chemical reduction on Staphylococcus aureus and Escheirchia coli. Iranian Journal of Nutrition Sciences & Food Technology, 8 (4):83-92 (In Persian)
4.Ashiri, S., Safari, J. 2013. Synthesis of gold and silver nanoparticles in plant substrates and their application. Nanotechnology, 1(186): 12-15. (In Persian)
5.Ankamwar., B. 2010. Biosynthesis of Gold Nanoparticles (Green-Gold) Using Leaf Extract of Terminalia catappa. E-Journal of Chemistry, 7(4):1334-1339.
6.Aubourg, S.P., Piñeiro, C., Gallardo, J. M. and Barros-Velazquez, J. 2005. Biochemical changes and quality loss during chilled storage of farmed turbot (Psetta maxima). Food Chemistry, 90(3): 445-52.
7.Azizian Shermeh, O, Valizadeh, J., Noroozifar, M. and Qasemi, A. 2016 a. Investigation the antimicrobial activity of silver nanoparticles biosynthesis by aqueous extract of Sambucus ebulus L. Journal of Ilam University of Medical Sciences, 25(4): 92-108. (In Persian)
8.Azizian shermeh, O., Valizadeh, J., Noroozifar, M., Ghasemi, A. and Valizadeh, M. 2016 b. Optimization, characterization and anti-microbial activity of gold nanoparticles biosynthesized using aqueous extract of Sambucus ebulus L. Eco-phytochemical Journal of Medicinal plants, 1:1-18. (In Persian)
9.Azizian Shermeh, O., Einali, A. and Ghasemi, A. 2017 a. Rapid biologically one-step synthesis of stable bioactive silver nanoparticles using Osage orange (Maclura pomifera) leaf extract and their antimicrobial activities. Advanced Powder Techmology, 28: 3164-3171
10.Azizian Shermeh, O., Valizadeh, M., Valizadeh, J., Taherizadeh, M. and Beigomi, M. 2017 b. Phytochemical investigation and phytosynthesis of silver nanoparticles using aqueous extract of Capparis spinosa L. Journal of Modares Biological Sciences (JMBS), 8 (1): 80-90 (In Persian)
11.Azizian Shermeh, O., Taherizadeh, M., Valizadeh, M., Valizadeh, J., Qasemi, A. and Naroei, B. 2017 c. Optimization, characterization, and investigation of antibacterial activity of gold Nanoparticles biosynthesized by aqueous extract of Seidlitzia rosmarinus. Qom Univercity of Medical Sciences Journal, 11 (5): 38-52 (In Persian)
12.Azizian Shermeh, O., Taherizadeh, M., Valizadeh, M. and Qasemi, A. 2018 a. Robial and antioxidant activities and Determining Phenolic and flavonoid contents of the extracts of five species from different families of the medicinal plants grown in Sistan and Baluchestan Province. Journal of Fasa University of Medical Sciences, 7(4): 465-479
13.Azizian Shermeh, O., Valizadeh, M., Taherizadeh, M. and Beigomi, M. 2018 b. Phytochemical investigation and phytosynthesis of eco-friendly stable bioactive gold and silver nanoparticles using petal extract of saffron (Crocus sativus L.) and study of their antimicrobial activities. Applied Nanoscience. https://doi.org/10.1007 /s13204-019-01059-5
14.Azizian Shermeh, O., Taherizadeh, M., Valizadeh, M., Ghasemi, A., Beigomi, M. and Kamali Deljoo, A. 2019. The study of antimicrobial effect of silver nanoparticles biosynthesized by the leaf aqueous extract of kelussia odoratissima mozaff. against some pathogenic microbes with food sources. Journal of Food Technology and Nutrition, 16 (1): 31-48 (In Persian)
15.Basiri, Sh. 2011. Investigation of the effect of temperature and air velocity in the dryer on the amount and quality of essential oil of Thymus. Innovation in Food Science and Technology (Journal of Food Science and Technology), 3(4): 75-85. (In Persian)
16.Cao, Y.W.C., Jin, R.C. and Mirkin, C.A. 2002. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 297: 1536-1540.
17.Chaloupka, K., Malam, Y. and Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28: 580-588.
18.Chaloupka, K., Malam, Y. and Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28 (11): 580-588.
19.Clara, S., Donatella, D. and Sossio, C. 2011. Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12): 1766-82. 9.
20.Cho, K.H., Park, J.E., Osaka, T. and Park, S. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta, 51: 956-960.
21.Christian, P., Von der Kammer, F., Baalousha, M. and Hofmann, T. 2008. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology, 17(5): 326-343.
22.Chung, N., Chu, P. 2010. Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa L.) during storage. Food Chemistry, 110: 16248-1625.
23.Ding, C.K., Chachin, K., Ueda, Y. and Imahori, Y. 1998. Purification and properties of polyphenol oxidase from loquat fruit. Journal of Agricultural Food Chemistry, 46(10): 4144 - 49.
24.Dwivedi, A.D. and Gopal, K. 2010. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A, 369(3): 27–33.
25.Ebrahimi, A., Khayami, M. and Nejati, V. 2012. Comparison of antimicrobial effect of different parts of Quercus persica against Escherichia coli O157:H7. The Horizon of Medical Scinces. 17 (4): 11-17 (In Persian)
26.Ebrahimi Asl, S. and Zarei, A. 2015. Synthesis and characterization of ag/chitosan nanobiocomposite by chemical method and investigation of its application for food packaging. Journal of Food Microbiology, 2(2): 21-31 (In Persian)
27.Elmageed, M.A. and Hussein, B. 2008. Cytotoxicity and antimicrobial activity of Salvia officinalis L. flowers, Sudan Journal of Medical Sciences, 3(2): 127-132
28.Etemadi, M., Mohebbi-Kalhori, D., Azizian Shermeh, O. and Qasemi, A. 2017. Phytosynthesis of silver nanoparticles using aqueous extract of Camellia sinensis L. and study of their antibacterial activities, Journal of Fasa University of Medical Sciences, 7(1): 39-52
29.Farhat, M.B., Landoulsi, A., Chaouch-Hamada, R., Sotomayor, J.A. and Jordn, M.J. 2013. Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats. Industrial Crops and Products, 49: 904-14.
30.Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y. and Chi, Y. 2009. Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chemistry, 115(1): 66-70.
31.Feng, Q.L., Wu, J., Chen, G.O., Cui, F. Z., Kim, T.N. and Kim, J.O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4): 662-8.
32.Fernández, A., Soriano, E., López-Carballo, G., Picouet, P., Lloret, E., Gavara, R. and Hernandez-Munoz, P. 2009. Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Research International, 42(8): 1105-12.
33.Fernández, A., Picouet, P. and Loret, E. 2010. Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. International Journal of Food Microbialogy, 142(1-2): 222-8.
34.Furno, F., Morley, K.S., Wong, B., Sharp B.L., Arnold, P.L., Howdle, S.M., Bayston, R., Brown, P.D., Winship, P.D. and Reid, H.J. 2004. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, 54(6): 1019-24.
35.Govindaraju, K., Tamilselvan, S., Kiruthiga, V. and Singaravelu, G. 2010. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides, 3(1): 394-399.
36.Gardea-Torresdey, J.L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S. and Jose-Yacaman, M. 1999. Gold nanoparticles obtained by bio-precipitation from gold (iii) solutions. Journal of Nanoparticle Research, 1(3): 397-404.
37.Heidarpour, F., Wan, A.b., Karim Ghani, W. A., Fakhru’lRazi, A., Sobri, S., Heydarpour, V., Zargar, M. and Mozafari, M. R. 2010. Complete removal of pathogenic bacteria from drinking water using nano silver-coated cylindrical polypropylene filters. Clean Technologies and Environmental Policy, 13(3): 499-507.
38.Jassbi, A., Zare, S., Firuzi, O. and Xiao, J. 2015. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochemy Reviews. Available from: http://dx.doi.org/10.1007 /s11101-015-9427-z.
39.Jassbi, A.R., Eghtesadi, F., Hazeri, N., Ma”somi, H., Valizadeh, J., Chandran J. N., Schneider, B. and Baldwin, I.T. 2017. The roots of Salvia rhytidea: a rich source of biologically active diterpenoids. Natural Product Research, 31(4): 477-481.
40.Kaushik Thakkar, N., Snehit Mhatre, S. and Rasesh Parikh, Y. 2010. Biological synthesis of metallic nanoparticles. nanomedicine, 6: 257-262.
41.Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J. and Srinivasan, K. 2011. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc, 79: 594-98.
42.Kim, J. S, Kuk, E., Yu, K. N., Kim, J-H., Park, S. J., Le, H.J., Kim, S.H., Park, Y.K., Park, Y. H., Hwanq, C.Y., Kim, Y.K., Lee, Y.S., Jeonq, D.H. and Cho, M.H. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1): 95-101.
43.Mazaraie, A., Mousavi-Nik, S.M. and Fahmideh, L. 2018. Assessments of phenolic, flavonoid and antioxidant activity of aqueous, alcoholic, methanol and acetone extracts of thirteen medicinal plants. Nova Biologica Reperta, 4 (4): 299-309. (In Persian)
44.Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A. and Schultz, S. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 116(15): 6755-59.
45.Mohasseli, T. and Pourseyyedi, Sh. 2015. Green synthesis and characterization of silver nanoparticles using seed aqueous extract of Sesame. Biotechnology Tarbiat Modares University, 1(6): 10-20. (In Persian)
46.Monteiro, D.R., Gorup, L.F., Takamiya, A.S., Ruvollo-Fiho, A.C., Carmago, E.R. and Barbosa, D.B. 2009. The growing importance of materials that prevent microbial adhesion. International Journal of Antimicrobial Agents, 34(2): 103-10.
47.Oliveria, J.R.D., Figueiredo Vilela, P.D.G., Aguiar Almeida, R.B.D., Oliveira, F.E.D., Talgo Carvalho, C.A., Afonso Camargo, S.E., Cardoso Jorge, A.O. and Oliveira, L.D.D. 2019. Antimicrobial activity of noncytotoxic concentrations of Salvia officinalis extract against bacterial and fungal species from the oral cavity. General dentistry, 434: 22-26.
48.Omidbaigi, R. 2005. Approaches to the production and processing of medicinal plants, Behnashr Publications, Mashhad, 1: 347-8.
49.Özogul, F., Polat, A. and Özogul, Y. 2004. The effects of modified atmosphere packaging and vacuum packaging on chemical, sensory and microbiological changes of sardines (Sardina pilchardus). Food Chemistry, 85(1): 49-57.
50.Özyurt, G., Kuley, E., Özkütük, S. and Özogul, F. 2009. Sensory, microbiological and chemical assessment of the freshness of red mullet (Mullus barbatus) and goldband goatfish (Upeneus moluccensis) during storage in ice. Food Chemistry, 114(2): 505-510.
51.Philip, D. 2009. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009; 73: 374-381.
52.Philip, D. 2010. Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E, 42(5); 1417–24.
53.Praveen Kumar, K., Paul, W., Chandra, P. and Sharma, P. 2007. Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility. Process Biochemistry, 46: 2007-2013.
54.Rimal Isaac, SR., Sakthivel, G. and Murthy, Ch. 2013. Green synthesis of gold and silver nanoparticles using averrhoa bilimbi fruit extract. Journal of Nanotechnology, 128(5): 89-101.
55.Salimpour, F., Mazooji, A. and Akhoondi Darzikolaei, S. 2011. Chemotaxonomy of six Salvia species using essential oil composition markers. Journal of Medicinal Plants Research, 5(9):1795-1805.
56.Salmanpour Ahmadi, H. A., Manouchehri, H. and Safari, R. 2016. Evaluation chitosan nanoparticles and nano-encapsulated thyme effect on microbial spoilage of Rainbow trout (Oncorhynchus mykiss) fillet inoculated with Listeria monocytogenes. Journal of Fisheries (Iranian Journal of Natural Resources), 68 (4): 577-587 (In Persian)
57.Shafizadeh, F. 2002. Medicinal plants of lorestan province, Hayian Publisher, Tehran.
58.Shankar, SS., Rai, A., Ahmad, A. and Sastry, M. 2002. Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275: 496-502.
59.Shekarforoush, S.S., Razavi Rohani, S.M., karim, G., Kiaie S.M.M., Rokni, N. and Abbasvali, M. 2013. Study on the overview on food borne bacteria in food with animal origin in Iran; Part three; Seafood. Journal of Food Hygine, 2(4): 15-32 (In Persian)
60.Shenya, D.S., Mathewa, J. and Philip, D. 2011. Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardiumoccidentale. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79: 254-262.
61.Singh, P., Garg, A., Pandit, S., Mokkapati, V.R.S.S and Mijakovic, D. 2018. Antimicrobial effects of biogenic Nanoparticles. nanomaterials, 8, 1009; DOI: 10.3390/nano8121009.
62.Stobie, N., Duffy, B., McCormack, D. E., Colreavy, J., Hidalgo, M., McHale, P. and Hinder, S.J. 2008. Prevention of Staphylococcus epidermidis biofilm formation using a low - temperature processed silver - doped phenyltriethoxysilane sol - gel coating. Biomaterials, 29(8): 963–9.
63.Salari. S., Bakhshi, T., Sharififar, F., Naseri, A. and Ghasemi Nejad Almani, P. 2016. Evaluation of antifungal activity of standardized extract of Salvia rhytidea Benth. (Lamiaceae) against various Candida isolates. . Journal de Mycologie Médicale, 26(4): 323-330. Doi: 10.1016/j.mycmed.
64.Vallet-Regí, M., González, B. and Izquierdo-Barba, I. 2019. Nanomaterials as Promising alternative in the infection treatment. Internatioanl Journal of Molecular Sciences. 20, 3806; doi: 10.3390/ijms20153806
65.Vijayaraghavana, K., Mahadevana, A., Sathishkumara, M., Pavagadhia, S. and Balasubramaniana, R. 2011. Biosynthesis of Au (0) from Au (III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chemical Engineering Journal, 167: 223–227.
66.Walker, J.B., Sytsma, K.J. 2007. Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the lever. Annals of Botany, 100(2):375-391.
67.Wang, L., Hu, Ch. and Shao, L. 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future, International Journal of Nanomedicine, 12: 1227-1249.
68.Wang, Y., He, X., Wang, K., Zhang, X. and Tan, W. 2009. Barbated skull cup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids and surfaces B, Bio interfaces, 73: 75-79.
69.Yong Song, J., Hyeon-Kyeong, J. and Beom Soo, K. 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochemistry, 44: 1133–1138.
70.Zahabi, Z.F., Sharififar, F., Almani, P.G.N. and Salari, S. 2020. Antifungal activity of different fractions of Salvia rhytidea Benth. as a valuable medicinal plant against various species of Candida in Kerman Province, southeast Iran, Gene Reports, https://doi.org/ 10.1016/j.genrep. 100624.
71.ZandiNavgaran, Kh., Naseri, L. and Esmaiili, M. 2014. Effect of packaging material containing nano-silver and silicate clay particles on postharvest quality attributes of sweet cherry cv. Syaahe Mashhad, Journal of Food Research, 24(1): 89-102 (In Persian)
72.Zarei, M., Jamnejad, A. and Khajehali, E. 2014. Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur Journal of Microbiology, 7(1): 1-11.
73.Zarei, Z., Razmjoue, D. and Karimi, J. 2018. Investigating the bioavailability and antibacterial effect of silver nanoparticles produced by (Ferulago angulate Boiss.) extract. Journal of Jahrom University of Medical Scinces, 16 (1): 24-3462. (In Persian)
74.Zarei, G. and Morovvati Sharifabad, A. 2017. Essential oil composition of Salvia eremophila Boiss. In different stages of plant growth in Yazd province. Eco-phytochemical Journal of Medicinal Plants, 4(4): 74-84 (In Persian)