بررسی اثر تنش نمکی (NaCl)، CaCl2 و اسید آسکوربیک بر فیزیولوژی و ویژگیهای رافیدی گیاه سه گوش (Carpobrotus edulis L.)
محورهای موضوعی : ژنتیکمحمدعلی رضایی 1 , سیدهزهرا حسینی کلبادی 2 , مریم صفایی کتولی 3 , فریبا امیرلطیفلی 4
1 - گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد گرگان
2 - باشگاه پژوهشگران، دانشگاه آزاد اسلامی، واحد گرگان.
3 - باشگاه پژوهشگران، دانشگاه آزاد اسلامی، واحد گرگان.
4 - دانشگاه آزاد اسلامی، واحد گرگان.
کلید واژه: پرولین, شوری, پراکسیداز, کلسیم, گلیسین بتائین, پروتئین کل, قند محلول, اسکوربات, رافید, گیاه سه گوش,
چکیده مقاله :
به منظور بررسی اثرات شوری بر گیاه سه گوش (Carpobrotus edulis L.)، سه نمونه خاک با هدایت الکتریکی 1، 8 و 12 دسی زیمنس بر متر برای انجام آزمونهای گلدانی انتخاب گردید و پس از تکثیر رویشی گیاه، تیمار اسید اسکوربیک قبل از تیمارهای NaCl و CaCl2 در دو غلظت 5/2 و 5 میلی مول روی برگ ها پاشیده شد و تیمارهای CaCl2 نیز به میزان 25 و 50 درصد تیمارهای نمک به خاک اضافه گردید. نتایج نشان داد که با افزایش شوری (EC)، CaCl2 و آسکوربات در مقایسه با تیمار شاهد مقدار سدیم، کلر، کلسیم و پتاسیم برگ ها افزایش معنیداری داشتند. تیمارهای CaCl2 و آسکوربات بر شدت تنش شوری و جذب سدیم اثر کاهنده نداشته اند. گیاه از قندهای محلول و پرولین به عنوان اسمولیت برای افزایش فشار اسمزی استفاده نکرد. مقدار گلیسین بتائین و پروتئین کل با افزایش شوری افزایش یافته و گیاه در زمره گیاهان با استراتژی تولید و تجمع تنها گلیسین بتائین قرار گرفت و از پرولین به عنوان اسمولیت استفاده ننمود. تیمار کلسیمی مناسب برای بهبود فعالیت آنزیم پراکسیداز جهت پاک سازی انواع اکسیژن فعال در شوری متفاوت بود. مورفولوژی اکسالات کلسیم، رافیدها و تعداد دستههای رافید در مقطع عرضی برگهای گیاه سه گوش و تعداد سوزنهای رافید در واحد حجم از روند فیزیولوژیکی خاصی تبعیت نکرده و تغییرات معنیداری نداشته و تحت تاثیر شوری خاک، غلظت کلسیم و تیمارهای آسکوربات قرار نگرفت.
In order to study of effects of salinity stress on Ice plant (Carpobrotus edulis L.), three kind of soil with 1, 8 and 12ds/m selected for poted experiments. Before NaCl and CaCl2 treatments and after vegetative generation, ascorbate was treated in two concentrations of 2.5 and 5 mmol. CaCl2 treatments supplemented as 25 and 50 percent of salt treatment. Results indicated that with increasing of salinity (EC), calcium and ascorbate treatments, Na+, Cl-, Ca+2 and K+ of leaves increased significantly, in comparison with control. CaCl2 and ascorbate treatments have no diminishing effects on salinity stress intensity and Na+ absorption. Plant did not use soluble sugar and proline as an osmolyte for increasing osmotic pressure. Glycine betaine and total protein contents increased with increasing of salinity stress and plant got included among plants with the strategy of production and accumulation of glycine betaine and did not use proline. Suitable need of calcium for amelioration of peroxidase activity for scavenging of reactive oxygen species was different in salinities. Calcium oxalate and raphide morphology and raphide bundles number in cross section of leaves and raphides needles number in volume unit had no specific physiological trend and did not change significantly and was not affected by soil salinity, calcium concentration and ascorbate treatments.
دیانسانی، آ. (1386). بررسی اثر آسکوربات بر تنش اکسیداتیو حاصل از تنش شوری و نیز پاسخ مورفوفیزیولوژی گیاه سویا. پایاننامه کارشناسی ارشد. دانشگاه آزاد اسلامی واحد گرگان. 56-94.
منطقی، ن. (1365). تشریح روش ها و بررسیهای آزمایشگاهی روی نمونههای خاک و آب. موسسه تحقیقات خاک و آب. نشریه شماره 168.
_||_Abdelmottaleb A.M. (1989(. Ultrastructural and biochemical studies on formation of calcium oxalate in plants. Thesis (Ph. D.). Washington State Univ., Pullman, WA (USA(.
Baran, M. and Monje, P.V. (2002). Characterization of Calcium Oxalates Generated as Biominerals in Cacti. Plant Physiol. 128 (2): 707–713.
Bates L. S, Waldern R. P., and Teare I. D. (1973). Rapid determination of free proline for water stress studies, Plant Soil, 39: 205- 207.
Bohnert, H.J., and Jensen, R.G.(1996). Strategies for engineering Water stress tolerance in plants. Trends in Biotechnolegy, 14: 89-97.
Bruria H, Arie N. (1998). Physiological response of potato plants to soil salinity and water deficit, Plant Sci. 137: 43-51.
Chance B., Maehly C. (1995). Assay of Catalase and Peroxidase , Methodes Enzymol. 11: 764- 775.
Cramer, G.R., Lauchli, A., Polito, V.S. (1985). Displacement of Ca+2 by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiology. 47: 207-211.
Davies, K.J.A. (1987). Protein damage and degradation by oxygene radicales, I. General Aspects. J. Biol. Chem. 262. 9895 – 990.
Drennan, M. P., and Zakrzewski, L. M. (2005). Carpobrotus edulis (L.) N.B.BR: Implications for its spread into the Ballona Wetlands. Department of Biological, Loyola Marymount Unit. Los Angeles, CA 90045.
Flower, T. J. and Yeo, A. R. (1995). Breeding for salinity resistance in crop plants : where next, Aust. J. Plant Physiol, 22: 875 – 885.
Franceschi, V. R., Horner H. T. (1980). Calcium oxalate crystals in plants. Bot. Rev. 46: 361–427.
Franceschi, V. R. Loewus, F. A. (1995). Oxalate biosynthesis and function in plants. In : Khan SR., editor. Calcium Oxalate in Biological Systems. Boca Raton, FL: CRC Press; pp. 113–130.
Francisco, G., Jhon, L., Jifon, S., Micaele, C., Tames, P.S., (2002). Gas exchange, chlorophyll and nuntrient content in relation to Na+ and Cl- accumulation in “sunburst” mandarine grafted on different root stocks. Plant Sci. 35: 314-320.
Fridovich, I., (1986). Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247: 1-11.
Garcia –lidon, J.M. , Ortis, J.M., Garcia –legaz, M.F., Cerda A.,(1998). Role of reotstock , and scion on root and leaf in accumulation in lemon trees grown under saline condition , Fruites, 53 : 89-97.
Gorham , J. , (1995). Mechanisms of salt tolerance in halophytes. In : Chouker-Allah, C.V., Malcolm, C.V., Hamdy, A.(Eds), Halophytes and Biosaline Agriculture. Marced Dekker, New Yourk, pp. 207-223.
Grattan S. R., Grieve C. M. (1992). Mineral element acquisition and growth response of plant grown in saline environment, Agric. Ecosyst. Envir. 38 : 275-300.
Helluburst J. A. and Craigie J.S. (1978). Handbook of Physilogical and Biochemical Method. Cambridge Univ. Press.
Horrner H.T., Kausch A.P., Wagner B.L. (2000). Ascorbic acid : A precursor of oxalate in crystal idioblasts of Yucca torreyi in liquid root culture. International Journal of Plant Science 161: 861–868.
Keates, S.A., Tarlyn, N., Loewus, F.A., Franceschi, V.R. (2000). L-Ascorbic acid and L-galactose are sources of oxalic acid and calcium oxalate in Pistia stratiotes, Phytochemistry 53 , pp. 433–440
Larher, F., Rotival – Garnier, N., Lemesle P., Plasman, M., Bouchereau, A. (1996). The glycinebetaine inhibitory effect on the osmoinduced proline response of rape leaf discs. Plant Science.113 : 21-31.
Lawry O.D., Reserbrough N., Foil A. L. and Romdall R.J. (1951). Protein measurment with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
Lynch, T., Cramer, G.R., Lauchli, A. (1987). Salinity reduces membrane-associated calcium in corn root protoplast. Plant Physiology. 83 : 390-394.
Maribel, L. D–S., Satoshi, T., (1998). Antioxidant response of rice seedling to salinity stress. Plant Sci , BS : 1-9.
Mittal R., Dubey R. S. (1991). Behaviour of peroxidase in rice : Changes in enzymes activity and isoforms in relation to salt tolerance, Plant Physiol. Biochem. 19: 31- 40.
Mohammad, B., Kinet, J-M., Lutts, S.(1998). Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding cal (U) cultures. Plant Sci. 137: 131-142.
Nakata, P.A and Mcconn, M.M. (2002). Calcium Oxalate Crystal Morphology Mutants From Medicago Truncatula. Planta. 215(3): 380-386.
Nickel, R.S., and Cunningham, B.A. (1969). Improved peroxidase assay method and application to comparative measurments of peroxidase catalysis. Ann. Biochem. 27: 292- 299.
Nuccio, M.L., Rhodes, D., McNeil, S.D., and Hanson, A. (1999). Metabolic engineering of plant for osmotic stress resistance. Curr. Opin . plant Biol. 2: 128-134.
Neumann, P.M., Shalata, A.(2001). Exogenous ascorbic acid (Vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany. Vol. 52, No. 364, pp, 2207-2211.
Perera, L.K.R.R., Robinson, M.F., Mansfield, T.A.(1995). Responses of the stomata of Aster trifolium to calcium and sodium ions in relations to salinity tolerance. J. Exp. Bot. 46 : 623-629.
Rengel, Z. (1992). The role of Ca+2 in salt toxcity. Plant Cell and Envronment, 15: 625-632.
Sairam, R.K., Rao K.V., Srivastava G.C. (2002). Diferential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci.163: 1037 - 1046.
Shao, H.B., Liang, Z.S., Shao, M.A., and Wang, B.C., (2005). Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficit among 10 wheat genotypes at seedling stage. Colloids surf B Biointerface, 42(2): 107-113.
Smith, B.N. Girija, C., Swamy, P.M. (2002). Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycine betaine in peanut (Arachis hypogea L.). Environmental and experimental Botany. 47: 1-10.
Stassart, J.M., Neirncks , L. and Dejaegere , R.(1981). The interactions between monovalent cations and Ca+2 during their absorption on isolated cell walls and absorption by intact barley roots. Annals of Botany, 47: 647-652.
Tari, I., Csiszar, J., Szalai, G., Horvath, F., Pcsvaradi, A., Kiss, G., Szepesi, A., Szabo, M., Erdei, L.(2002). Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatmemt. Acta Biologica Szegediensis, Proceedings of the 7th Congress on plant physiology, 46, p. 55-56.
Williams, S. and Twine, N. (1960). Flame photometric method for sodium, potassium and calcium in modern methods of plant analysis by K. peach and M V Tracey, Vol, V, Springer , Verlag, Berline.
Wright, G.C., Patten, K.D., Drew, M.C.(1993). Gas exchanges and chlorophyll content of tifblue rabbiteye and sharpblue southern highbush blueberry exposed to salinity and supplement calcium. J. Am. Soc. Hertic. Sci. 118 : 456-463.
Zajicek, J., Sohan, D., Jasoni, R. (1999). Plant - water relation of NaCl and calcium treated sunflower plants. Environmental and experimental Botany. 42 : 105-111.