تعیین میزان شیوع گونههای ویبریو در ماهیها و میگوهای صید شده در شهرستان قشم، ایران
محورهای موضوعی :
بهداشت مواد غذایی
ابراهیم رحیمی
1
,
محمدامین حیدرزادی
2
,
نجمه واحد دهکردی
3
1 - استاد گروه بهداشت مواد غذایی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران
2 - دانشجوی دکترای تخصصی بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران
3 - دانشجوی دکترای تخصصی بهداشت مواد غذایی، گروه بهداشت مواد غذایی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران
تاریخ دریافت : 1401/11/30
تاریخ پذیرش : 1402/03/07
تاریخ انتشار : 1401/12/01
کلید واژه:
ماهی,
قشم,
میگو,
آلودگیهای میکروبی,
ویبریو,
چکیده مقاله :
ماهی و میگو منابع بسیار خوبی از مواد مغذی مانند اسیدهای چرب امگا 3، ویتامین D و پروتئین هستند، لذا بخش مهمی از رژیم غذایی مردم را تشکیل می دهند؛ با این حال، موادغذایی دریایی می توانند مخاطراتی را برای مصرف کنندگان به همراه داشته باشند، لذا هدف از مطالعه حاضر تعیین شیوع انواع ویبریو در ماهی و میگوهای صید شده در شهرستان قشم، ایران می باشد. در این مطالعه تعداد 250 عدد نمونه از هر نمونه 50 عدد، شامل ماهی شوریده، حلواسفید، شیرماهی، کفشک ماهی و میگو از ساحل شهرستان قشم به صورت تصادفی برداشت و به آزمایشگاه بهداشت مواد غذایی دانشگاه آزاد شهرکرد منتقل شدند. نمونه ها مطابق روش استاندارد جستجوی گونههای ویبریو مورد آزمایش قرار گرفتند. از نرم افزار اماری SPSS نسخه 23 و از آزمون آماری کای اسکوئر جهت آنالیز داده ها استفاده شد. حد معنی داری بودن در این مطالعه (P<00/05) در نظر گرفته شد. نتایج نشان داد که بیشترین آلودگی در بین ویبرویوها مربوط به پاراهمولیتیکوس با 74 درصد آلودگی و کمترین میزان آلودگی مربوط آلژینولیتیکوس با 14 درصد آلودگی بود. میزان آلودگی ماهی شوریده، حلواسفید، شیرماهی، کفشک ماهی و میگو به ترتیب 30، 16، 6، 24 و 23 درصد بود. در این بررسی، احتمال خطر حاصل از مصرف فرآوردههای خام، نیمه پخته و یا خوب طبخ نشده محرز است. بنابراین توجه به رعایت اصول بهداشتی بعد از صید یعنی ، منجمد کردن تا زمان مصرف و پخت کافی محصول مهم است.
چکیده انگلیسی:
Fish and shrimp are very good sources of nutrients such as omega-3 fatty acids, vitamin D, and protein, so they form an important part of people's diet; However, seafood can bring risks for consumers, so the purpose of this study is to investigate the prevalence of Vibrio types in fish and shrimps caught in Qeshm city, Iran. In this study, 250 samples, 50 of each sample, including salted fish, Halvasfid, milkfish, shoe fish, and shrimp, were randomly taken from the beach of Qeshm City and transferred to the food hygiene laboratory of Shahrekord Azad University. The samples were tested according to the standard method of searching for Vibrio species. SPSS version 23 statistical software and chi-square statistical test were used for data analysis. The limit of significance in this study was considered (P<0.05). The results showed that the highest level of contamination among Vibrio was related to parahaemolyticus with 74% of contamination and the lowest level of contamination was related to alginolyticus with 14% of contamination. The contamination rate of salted fish, Halvasfid, milkfish, shoe fish, and shrimp were 30, 16, 6, 24, and 23% respectively. In this study, the risk of consuming raw, half-cooked, or undercooked products is clear. Therefore, it is important to pay attention to the hygiene principles after catching, i.e., freezing until the time of consumption and adequate cooking of the product.
منابع و مأخذ:
Abdelsalam, M., M. Z. Ewiss, H. S. Khalefa, M. A. Mahmoud, M. Y. Elgendy, and D. A. Abdel-Moneam. (2021). Coinfections of aeromonas spp., enterococcus faecalis, and vibrio alginolyticus isolated from farmed nile tilapia and african catfish in Egypt, with an emphasis on poor water quality. Microbial Pathogenesis, 160: 105213.
Al-Othrubi, S. M., C. Y. Kqueen, H. Mirhosseini, Y. A. Hadi, and S. Radu. (2014). Antibiotic resistance of vibrio parahaemolyticus isolated from cockles and shrimp sea food marketed in Selangor, malaysia. Clinical Microbiology, Open Access.
Alfaris, N. A., G. M. Alshammari, J. Z. Altamimi, L. A. Almousa, R. I. Alagal, N. M. Alkehayez, D. H. Aljabryn, M. M. Alsayadi, and M. A. Yahya. (2022). Evaluating the effects of different processing methods on the nutritional composition of shrimp and the antioxidant activity of shrimp powder. Saudi Journal of Biological Sciences, 29(1): 640-49.
APH, A. (1997). Compendium of methods for the microbiological examination. 3rdEd.” M. L. Speak. American Public Health Association, Washington: 70-110.
Balami, S., A. Sharma, and R. Karn. (2019). Significance of nutritional value of fish for human health. Malaysian Journal of Halal Research, 2(2): 32-34.
Bank, M. S., M. Metian, and P. W. Swarzenski. (2020a). Defining seafood safety in the anthropocene. Environmental Science & Technology, 54(14): 8506-08.
Bank, M. S., M. Metian, and P. W. Swarzenski. (2020b). Seafood safety revisited: response to comment on “defining seafood safety in the anthropocene”. Environmental Science & Technology, 54(19): 12805-06.
Basti, A. A., A. Misaghi, T. Z. Salehi, and A. Kamkar. (2006). Bacterial pathogens in fresh, smoked and salted iranian fish. Food Control, 17(3): 183-88.
Chakraborty, R. D. and P. Surendran. (2008). Occurrence and distribution of virulent strains of Vibrio parahaemolyticus in seafoods marketed from Cochin (India). World Journal of Microbiology and Biotechnology, 24(9): 1929-35.
Das, S., A. Kumar, P. Kaushik, and B. Kurmi. (2014). Occurrence of Vibrio parahaemolyticus in marine fish and shellfish.
Deepak, S., K. Porteen, A. Elango, T. Senthilkumar, R. Narendra Babu, and S. Sureshkannan. (2022). Isolation and characterization of Vibrio spp. from sea food and environmental samples in and around Chennai city: Isolation and characterization of Vibrio spp.-----------environmental samples in and around Chennai city.
Devi, R., P. Surendran, and K. Chakraborty. (2009). Antibiotic resistance and plasmid profiling of Vibrio parahaemolyticus isolated from shrimp farms along the southwest coast of India. World Journal of Microbiology and Biotechnology, 25(11): 2005-12.
Dubey, S., A. Singh, B. Kumar, N. K. Singh, and A. Tyagi. (2021). Isolation and characterization of bacteriophages from inland saline aquaculture environments to control Vibrio parahaemolyticus contamination in shrimp. Indian Journal of Microbiology, 61(2): 212-17.
Fonseca, V. F., I. A. Duarte, A. R. Matos, P. Reis-Santos, and B. Duarte. (2022). Fatty acid profiles as natural tracers of provenance and lipid quality indicators in illegally sourced fish and bivalves. Food Control, 134: 108735.
Froelich, B. A. and D. A. Daines. (2020). In hot water: effects of climate change on Vibrio–human interactions. Environmental microbiology, 22(10): 4101-11.
Grimes, D. J. (2020). The vibrios: Scavengers, symbionts, and pathogens from the sea. Microbial ecology, 80(3): 501-06.
He, Y., S. Wang, J. Zhang, X. Zhang, F. Sun, B. He, and X. Liu. (2019). Integrative and conjugative elements-positive Vibrio parahaemolyticus isolated from aquaculture shrimp in Jiangsu, China. Frontiers in microbiology, 10: 1574.
Hosseini, H., A. M. Cheraghali, R. Yalfani, and V. Razavilar. (2004). Incidence of Vibrio spp. in shrimp caught off the south coast of iran. Food Control, 15(3): 187-90.
Hosseini, S., F. Safarpoordehkordi, E. Rahimi, and A. Shakerian. (2014). Prevalence study of Vibrio species and frequency of the virulence genes of Vibrio parahaemolyticus isolated from fresh and salted shrimps in Genaveh seaport. Food Hygiene, 4(2 (14)): 17-26.
Hounmanou, Y. M. G., P. Leekitcharoenphon, R. S. Hendriksen, T. V. Dougnon, R. H. Mdegela, J. E. Olsen, and A. Dalsgaard. (2019). Surveillance and genomics of toxigenic Vibrio cholerae O1 from fish, phytoplankton and water in Lake Victoria, Tanzania. Frontiers in microbiology, 10: 901.
Jiang, Z., L. Yu, T. Feng, and J. Pan. (2020). Comment on defining seafood safety in the anthropocene. Environmental Science & Technology, 54(19): 12803-04.
Luan, X., J. Chen, Y. Liu, Y. Li, J. Jia, R. Liu, and X.-H. Zhang. (2008). Rapid quantitative detection of Vibrio parahaemolyticus in seafood by MPN-PCR. Current microbiology, 57(3): 218-21.
Mohamad, N., F. A. Mohdroseli, M. N. A. Azmai, M. Z. Saad, I. S. Md Yasin, N. A. Zulkiply, and N. S. Nasruddin. (2019). Natural concurrent infection of Vibrio harveyi and V. alginolyticus in cultured hybrid groupers in Malaysia. Journal of aquatic animal health, 31(1): 88-96.
Mok, J. S., S. R. Cho, Y. J. Park, M. R. Jo, K. S. Ha, P. H. Kim, and M. J. Kim. (2021). Distribution and antimicrobial resistance of Vibrio parahaemolyticus isolated from fish and shrimp aquaculture farms along the korean coast. Marine Pollution Bulletin, 171: 112785.
Oh, E.-G., K.-T. Son, H. Yu, T.-S. Lee, H.-J. Lee, S. Shin, J.-Y. Kwon, K. Park, and J. Kim. (2011). Antimicrobial resistance of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from farmed fish in korea from 2005 through 2007. Journal of food protection, 74(3): 380-86.
Rahimi, E., M. Ameri, A. Doosti, and A. R. Gholampour. (2010). Occurrence of toxigenic Vibrio parahaemolyticus strains in shrimp in Iran. Foodborne pathogens and disease, 7(9): 1107-11.
Raissy, M., E. Rahimi, R. Azargun, M. Moumeni, M. Rashedi, and H. Sohrabi. (2015). Molecular detection of Vibrio spp. in fish and shrimp from the Persian gulf.
Sadat, A., H. El‐Sherbiny, A. Zakaria, H. Ramadan, and A. Awad. (2021). Prevalence, antibiogram and virulence characterization of Vibrio isolates from fish and shellfish in Egypt: A possible zoonotic hazard to humans. Journal of Applied Microbiology, 131(1): 485-98.
Saifedden, G., G. Farinazleen, A. Nor-Khaizura, A. Kayali, Y. Nakaguchi, M. Nishibuchi, and R. Son. (2016). Antibiotic susceptibility profile of Vibrio parahaemolyticus isolated from shrimp in selangor, Malaysia. International Food Research Journal, 23(6).
Sridonpai, P., K. Judprasong, N. Tirakomonpong, P. Saetang, P. Puwastien, N. Rojroongwasinkul, and B. Ongphiphadhanakul. (2022). Effects of different cooking methods on the vitamin D content of commonly consumed fish in thailand. foods, 11(6): 819.
Suganthi, A., C. Venkatraman, and Y. Chezhian. (2015). Proximate composition of different fish species collected from muthupet mangroves. Int J Fish Aquat Stud, 2(6): 420-3.
Sun, J., X. Li, Z. Hu, X. Xue, M. Zhang, Q. Wu, W. Zhang, Y. Zhang, and R. Lu. (2022). Characterization of Vibrio parahaemolyticus isolated from stool specimens of diarrhea patients in Nantong, Jiangsu, China during 2018–2020. Plos one, 17(8): e0273700.
Tagliavia, M., M. Salamone, C. Bennici, P. Quatrini, and A. Cuttitta. (2019). A modified culture medium for improved isolation of marine vibrios. MicrobiologyOpen, 8(9): e00835.
Tao, Z., A. M. Larsen, S. A. Bullard, A. C. Wright, and C. R. Arias. (2012). Prevalence and population structure of Vibrio vulnificus on fishes from the northern Gulf of mexico. Applied and environmental microbiology, 78(21): 7611-18.
Wan, L., Y. Peng, H. Yu, W. Xu, and J. He. (2022). Comparing the muscle nutritional quality of eight common wild-caught economic shrimp species from the East china Sea. Journal of Aquatic Food Product Technology, 1-16.
Wangman, P., T. Surasilp, C. Pengsuk, P. Sithigorngul, and S. Longyant. (2021). Development of a species‐specific monoclonal antibody for rapid detection and identification of foodborne pathogen Vibrio vulnificus. Journal of Food Safety, 41(6): e12939.
Wright, A. C. and N. Montazeri. (2021). Vibrios. In Foodborne Infections and Intoxications, pp. 105-24: Elsevier.
Xu, X., Q. Wu, J. Zhang, J. Cheng, S. Zhang, and K. Wu. (2014). Prevalence, pathogenicity, and serotypes of Vibrio parahaemolyticus in shrimp from Chinese retail markets. Food Control, 46: 81-85.
Yan, L., X. Pei, X. Zhang, W. Guan, H. Chui, H. Jia, G. Ma, S. Yang, Y. Li, and N. Li. (2019). Occurrence of four pathogenic Vibrios in Chinese freshwater fish farms in 2016. Food Control, 95: 85-89.
Yang, X., X. Zhang, Y. Wang, H. Shen, G. Jiang, J. Dong, P. Zhao, and S. Gao. (2020). A real-time recombinase polymerase amplification method for rapid detection of Vibrio vulnificus in seafood. Frontiers in microbiology, 11: 586981.
Yingkajorn, M., P. Mitraparp-Arthorn, S. Nuanualsuwan, R. Poomwised, N. Kongchuay, N. Khamhaeng, and V. Vuddhakul. (2014). Prevalence and quantification of pathogenic Vibrio parahaemolyticus during shrimp culture in thailand. Diseases of aquatic organisms, 112(2): 103-11.
_||_
Abdelsalam, M., M. Z. Ewiss, H. S. Khalefa, M. A. Mahmoud, M. Y. Elgendy, and D. A. Abdel-Moneam. (2021). Coinfections of aeromonas spp., enterococcus faecalis, and vibrio alginolyticus isolated from farmed nile tilapia and african catfish in Egypt, with an emphasis on poor water quality. Microbial Pathogenesis, 160: 105213.
Al-Othrubi, S. M., C. Y. Kqueen, H. Mirhosseini, Y. A. Hadi, and S. Radu. (2014). Antibiotic resistance of vibrio parahaemolyticus isolated from cockles and shrimp sea food marketed in Selangor, malaysia. Clinical Microbiology, Open Access.
Alfaris, N. A., G. M. Alshammari, J. Z. Altamimi, L. A. Almousa, R. I. Alagal, N. M. Alkehayez, D. H. Aljabryn, M. M. Alsayadi, and M. A. Yahya. (2022). Evaluating the effects of different processing methods on the nutritional composition of shrimp and the antioxidant activity of shrimp powder. Saudi Journal of Biological Sciences, 29(1): 640-49.
APH, A. (1997). Compendium of methods for the microbiological examination. 3rdEd.” M. L. Speak. American Public Health Association, Washington: 70-110.
Balami, S., A. Sharma, and R. Karn. (2019). Significance of nutritional value of fish for human health. Malaysian Journal of Halal Research, 2(2): 32-34.
Bank, M. S., M. Metian, and P. W. Swarzenski. (2020a). Defining seafood safety in the anthropocene. Environmental Science & Technology, 54(14): 8506-08.
Bank, M. S., M. Metian, and P. W. Swarzenski. (2020b). Seafood safety revisited: response to comment on “defining seafood safety in the anthropocene”. Environmental Science & Technology, 54(19): 12805-06.
Basti, A. A., A. Misaghi, T. Z. Salehi, and A. Kamkar. (2006). Bacterial pathogens in fresh, smoked and salted iranian fish. Food Control, 17(3): 183-88.
Chakraborty, R. D. and P. Surendran. (2008). Occurrence and distribution of virulent strains of Vibrio parahaemolyticus in seafoods marketed from Cochin (India). World Journal of Microbiology and Biotechnology, 24(9): 1929-35.
Das, S., A. Kumar, P. Kaushik, and B. Kurmi. (2014). Occurrence of Vibrio parahaemolyticus in marine fish and shellfish.
Deepak, S., K. Porteen, A. Elango, T. Senthilkumar, R. Narendra Babu, and S. Sureshkannan. (2022). Isolation and characterization of Vibrio spp. from sea food and environmental samples in and around Chennai city: Isolation and characterization of Vibrio spp.-----------environmental samples in and around Chennai city.
Devi, R., P. Surendran, and K. Chakraborty. (2009). Antibiotic resistance and plasmid profiling of Vibrio parahaemolyticus isolated from shrimp farms along the southwest coast of India. World Journal of Microbiology and Biotechnology, 25(11): 2005-12.
Dubey, S., A. Singh, B. Kumar, N. K. Singh, and A. Tyagi. (2021). Isolation and characterization of bacteriophages from inland saline aquaculture environments to control Vibrio parahaemolyticus contamination in shrimp. Indian Journal of Microbiology, 61(2): 212-17.
Fonseca, V. F., I. A. Duarte, A. R. Matos, P. Reis-Santos, and B. Duarte. (2022). Fatty acid profiles as natural tracers of provenance and lipid quality indicators in illegally sourced fish and bivalves. Food Control, 134: 108735.
Froelich, B. A. and D. A. Daines. (2020). In hot water: effects of climate change on Vibrio–human interactions. Environmental microbiology, 22(10): 4101-11.
Grimes, D. J. (2020). The vibrios: Scavengers, symbionts, and pathogens from the sea. Microbial ecology, 80(3): 501-06.
He, Y., S. Wang, J. Zhang, X. Zhang, F. Sun, B. He, and X. Liu. (2019). Integrative and conjugative elements-positive Vibrio parahaemolyticus isolated from aquaculture shrimp in Jiangsu, China. Frontiers in microbiology, 10: 1574.
Hosseini, H., A. M. Cheraghali, R. Yalfani, and V. Razavilar. (2004). Incidence of Vibrio spp. in shrimp caught off the south coast of iran. Food Control, 15(3): 187-90.
Hosseini, S., F. Safarpoordehkordi, E. Rahimi, and A. Shakerian. (2014). Prevalence study of Vibrio species and frequency of the virulence genes of Vibrio parahaemolyticus isolated from fresh and salted shrimps in Genaveh seaport. Food Hygiene, 4(2 (14)): 17-26.
Hounmanou, Y. M. G., P. Leekitcharoenphon, R. S. Hendriksen, T. V. Dougnon, R. H. Mdegela, J. E. Olsen, and A. Dalsgaard. (2019). Surveillance and genomics of toxigenic Vibrio cholerae O1 from fish, phytoplankton and water in Lake Victoria, Tanzania. Frontiers in microbiology, 10: 901.
Jiang, Z., L. Yu, T. Feng, and J. Pan. (2020). Comment on defining seafood safety in the anthropocene. Environmental Science & Technology, 54(19): 12803-04.
Luan, X., J. Chen, Y. Liu, Y. Li, J. Jia, R. Liu, and X.-H. Zhang. (2008). Rapid quantitative detection of Vibrio parahaemolyticus in seafood by MPN-PCR. Current microbiology, 57(3): 218-21.
Mohamad, N., F. A. Mohdroseli, M. N. A. Azmai, M. Z. Saad, I. S. Md Yasin, N. A. Zulkiply, and N. S. Nasruddin. (2019). Natural concurrent infection of Vibrio harveyi and V. alginolyticus in cultured hybrid groupers in Malaysia. Journal of aquatic animal health, 31(1): 88-96.
Mok, J. S., S. R. Cho, Y. J. Park, M. R. Jo, K. S. Ha, P. H. Kim, and M. J. Kim. (2021). Distribution and antimicrobial resistance of Vibrio parahaemolyticus isolated from fish and shrimp aquaculture farms along the korean coast. Marine Pollution Bulletin, 171: 112785.
Oh, E.-G., K.-T. Son, H. Yu, T.-S. Lee, H.-J. Lee, S. Shin, J.-Y. Kwon, K. Park, and J. Kim. (2011). Antimicrobial resistance of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from farmed fish in korea from 2005 through 2007. Journal of food protection, 74(3): 380-86.
Rahimi, E., M. Ameri, A. Doosti, and A. R. Gholampour. (2010). Occurrence of toxigenic Vibrio parahaemolyticus strains in shrimp in Iran. Foodborne pathogens and disease, 7(9): 1107-11.
Raissy, M., E. Rahimi, R. Azargun, M. Moumeni, M. Rashedi, and H. Sohrabi. (2015). Molecular detection of Vibrio spp. in fish and shrimp from the Persian gulf.
Sadat, A., H. El‐Sherbiny, A. Zakaria, H. Ramadan, and A. Awad. (2021). Prevalence, antibiogram and virulence characterization of Vibrio isolates from fish and shellfish in Egypt: A possible zoonotic hazard to humans. Journal of Applied Microbiology, 131(1): 485-98.
Saifedden, G., G. Farinazleen, A. Nor-Khaizura, A. Kayali, Y. Nakaguchi, M. Nishibuchi, and R. Son. (2016). Antibiotic susceptibility profile of Vibrio parahaemolyticus isolated from shrimp in selangor, Malaysia. International Food Research Journal, 23(6).
Sridonpai, P., K. Judprasong, N. Tirakomonpong, P. Saetang, P. Puwastien, N. Rojroongwasinkul, and B. Ongphiphadhanakul. (2022). Effects of different cooking methods on the vitamin D content of commonly consumed fish in thailand. foods, 11(6): 819.
Suganthi, A., C. Venkatraman, and Y. Chezhian. (2015). Proximate composition of different fish species collected from muthupet mangroves. Int J Fish Aquat Stud, 2(6): 420-3.
Sun, J., X. Li, Z. Hu, X. Xue, M. Zhang, Q. Wu, W. Zhang, Y. Zhang, and R. Lu. (2022). Characterization of Vibrio parahaemolyticus isolated from stool specimens of diarrhea patients in Nantong, Jiangsu, China during 2018–2020. Plos one, 17(8): e0273700.
Tagliavia, M., M. Salamone, C. Bennici, P. Quatrini, and A. Cuttitta. (2019). A modified culture medium for improved isolation of marine vibrios. MicrobiologyOpen, 8(9): e00835.
Tao, Z., A. M. Larsen, S. A. Bullard, A. C. Wright, and C. R. Arias. (2012). Prevalence and population structure of Vibrio vulnificus on fishes from the northern Gulf of mexico. Applied and environmental microbiology, 78(21): 7611-18.
Wan, L., Y. Peng, H. Yu, W. Xu, and J. He. (2022). Comparing the muscle nutritional quality of eight common wild-caught economic shrimp species from the East china Sea. Journal of Aquatic Food Product Technology, 1-16.
Wangman, P., T. Surasilp, C. Pengsuk, P. Sithigorngul, and S. Longyant. (2021). Development of a species‐specific monoclonal antibody for rapid detection and identification of foodborne pathogen Vibrio vulnificus. Journal of Food Safety, 41(6): e12939.
Wright, A. C. and N. Montazeri. (2021). Vibrios. In Foodborne Infections and Intoxications, pp. 105-24: Elsevier.
Xu, X., Q. Wu, J. Zhang, J. Cheng, S. Zhang, and K. Wu. (2014). Prevalence, pathogenicity, and serotypes of Vibrio parahaemolyticus in shrimp from Chinese retail markets. Food Control, 46: 81-85.
Yan, L., X. Pei, X. Zhang, W. Guan, H. Chui, H. Jia, G. Ma, S. Yang, Y. Li, and N. Li. (2019). Occurrence of four pathogenic Vibrios in Chinese freshwater fish farms in 2016. Food Control, 95: 85-89.
Yang, X., X. Zhang, Y. Wang, H. Shen, G. Jiang, J. Dong, P. Zhao, and S. Gao. (2020). A real-time recombinase polymerase amplification method for rapid detection of Vibrio vulnificus in seafood. Frontiers in microbiology, 11: 586981.
Yingkajorn, M., P. Mitraparp-Arthorn, S. Nuanualsuwan, R. Poomwised, N. Kongchuay, N. Khamhaeng, and V. Vuddhakul. (2014). Prevalence and quantification of pathogenic Vibrio parahaemolyticus during shrimp culture in thailand. Diseases of aquatic organisms, 112(2): 103-11.