مروری بر ریزجلبکها به عنوان مکملهای غذایی و دارویی فراسودمند
محورهای موضوعی : میکروبیولوژی مواد غذاییسید امیر علی انوار 1 , بهاره نوروزی 2
1 - استادیار گروه بهداشت مواد غذایی، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار گروه زیست شناسی، دانشکده علوم و فناوریهای همگرا، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: ترکیبات فعال زیستی, ریزجلبک ها, سیانوباکتری ها, مکمل غذایی سالم,
چکیده مقاله :
مقدمه: ریز جلبک ها یکی از اجزای مهم در زنجیره غذایی اکوسیستم های آبی و خشکی به شمار می روند و به عنوان غذا یا دارو به مصرف انسان می رسند. امروزه ریز جلبک ها و سیانو باکتری ها، در فرایند های کشت کنترل شده تولید می شوند و یا از زیستگاه های طبیعی برداشت می شوند و به عنوان مکمل هلی غذایی در سراسر جهان به بازار عرضه می شوند.مواد و روش ها: نتایج و دستاوردهای ارائه شده در مقالات مختلف مورد استفاده قرار گرفته است.یافته ها: سیانوباکتری ها طیف وسیعی از ترکیبات فعال بیولوژیکی را تولید می کنند و انتظار می رود که از برخی از آن ها در صنایع غذایی و دارویی استفاده شود. برخی از ترکیبات فعال سیانوباکتری ها مانند اسیدهای چرب، استرول ها، ترکیبات فرار، ترکیبات ایزوتوپی پایدار، کاروتنوئیدها، پلی ساکاریدها، لکتین ها، اسیدهای آمینه شبه مایکوسپورین، امولسیون کننده های زیستی که بطور بالقوه دارای اثرات ضد سرطان، ضد میکروبی، ضد ویروسی، ضد التهابی و... هستند برای اهداف بازاریابی استفاده می شود.نتیجه گیری: در این مقاله مروری کوشش شده است تا با معرفی ترکیبات فعال ریز جلبک ها و فعالیت های زیستی آن ها، به ارزش غذایی آن ها در رژیم غذایی و سلامت انسان ها، طیور، آبزیان و سایر حیوانات تاکید بیشتری گردد.
Introduction: Microalgae are important components in the food chain of aquatic and terrestrial ecosystems, the number of which is increasing and being consumed as food or medicine. Microalgae and cyanobacteria are produced in controlled culture processes or removed from natural habitats and marketed as a complete food supplement worldwide.Materials and Methods: For this paper review of the results and conclusions of investigated research articles concerned with the subject.Results: Cyanobacteria have a wide range of biologically active compounds that produce and are expected to be used in the food and pharmaceutical industries. Due to the active composition of cyanobacteria such as fatty acids, sterols, volatile compounds, stable isotopic compounds, carotenoids, polysaccharides, lectins, mycosporin-like amino acids, bioemulsifiers that are anti-virus and anti-inflammatory due to their elevation and etcetra are used for marketing purposes.Conclusion: This review article attempts to introduce the active compounds of microalgae and their biological activities, their nutritional value in human diet and health, during different periods, aquatic and other animals if possible.
Abbaspour, S., Nowruzi, B. & Hamdi, S. M. (2020). Optimizing the Cultivation Conditions of Fischerella sp. SH. A Cyanobacterium for Maximizing Polysaccharide Production with Antibacterial Activity Biological Journal of Microorganisms, 9(34), 23-53 [In Persian]
Carvalho, L. R., Costa-Neves, A., Conserva, G. A., Brunetti, R. L., Hentschke, G. S., Malone, C. F. & Rangel, M. (2013). Biologically active compounds from cyanobacteria extracts: in vivo and in vitro aspects. Revista Brasileira de Farmacognosia, 23(3), 471-480.
de Amarante, M. C. A., Braga, A. R. C., Sala, L. & Kalil, S. J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137, 109602.
Eghtedari, M., Porzani, S. J. & Nowruzi, B. (2021). Anticancer potential of natural peptides from terrestrial and marine environments: A review. Phytochemistry Letters. 42 (5), 87-103.
Encarnação, T., Pais, A. A., Campos, M. G. & Burrows, H. D. (2015). Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Science Progress, 98(2), 145-168.
Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1-14.
Gantar, M. & Svirčev, Z. (2008). Microalgae and cyanobacteria: food for thought 1. Journal of Phycology, 44(2), 260-268.
Guedes, A. C., Amaro, H. M. & Malcata, F. X. (2011). Microalgae as sources of high added‐value compounds—a brief review of recent work. Biotechnology Progress, 27(3), 597-613.
Guerreiro, A., Andrade, M. A., Menezes, C., Vilarinho, F. & Dias, E. (2020). Antioxidant and cytoprotective properties of cyanobacteria: Potential for biotechnological applications. Toxins, 12(9), 548.
He, X., Liu, Y. L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D. & Walker, H. W. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae, 54, 174-193.
Jaiswal, P., Singh, P. K. & Prasanna, R. (2008). Cyanobacterial bioactive molecules—an overview of their toxic properties. Canadian Journal of Microbiology, 54(9), 701-717.
Kultschar, B. & Llewellyn, C. (2018). Secondary metabolites in cyanobacteria. Secondary Metabolites—Sources and Applications, pp. 64.
Liu, L., Jokela, J., Wahlsten, M., Nowruzi, B., Permi, P., Zhang, Y. Z. & Sivonen, K. (2014). Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. Journal of Natural Products, 77(8), 1784-1790.
Liu, D., Liberton, M., Hendry, J. I., Aminian-Dehkordi, J., Maranas, C. D. & Pakrasi, H. B. (2021). Engineering biology approaches for food and nutrient production by cyanobacteria. Current Opinion in Biotechnology, 67, 1-6.
Martínez-Francés, E. & Escudero-Oñate, C. (2018). Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal Biotechnol, 6, 104-128.
Mysliwa-Kurdziel, B. & Solymosi, K. (2017). Phycobilins and phycobiliproteins used in food industry and medicine. Mini Reviews in Medicinal Chemistry, 17(13), 1173-1193.
Nicoletti, M. (2016). Microalgae nutraceuticals. Foods, 5(3), 54.
Nowruzi, B., Haghighat, S., Fahimi, H. & Mohammadi, E. (2018). Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research, 9(1), 5-12.
Nowruzi, B. & Blanco, S. (2019a). In silico identification and evolutionary analysis of candidate genes involved in the biosynthesis methylproline genes in cyanobacteria strains of Iran. Phytochemistry Letters, 29, 199-211.
Nowruzi, B., Wahlsten, M. & Jokela, J. (2019b). A report on finding a new peptide aldehyde from cyanobacterium nostoc sp. Bahar m by lc-ms and marfey’s analysis. Iranian Journal of Biotechnology, 17(2).
Nowruzi, B., Sarvari, G. & Blanco, S. (2020a). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959.
Nowruzi, B., Sarvari, G. & Blanco, S. (2020b). Applications of cyanobacteria in biomedicine. In Handbook of Algal Science, Technology and Medicine. pp. 441-453.
Nowruzi, B., Anvar, A. & Ahari, H. (2020c). Extraction, purification and evaluation of antimicrobial and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1. Journal of Microbial World, 13(2), 138-153.
Nowruzi, B., Fahimi, H. & Sturion Lorenzi, A. (2020d). Recovery of pure C-phycoerythrin from a limestone drought tolerant cyanobacterium Nostoc sp. and evaluation of its biological activity, 42, 115-128.
Panjiar, N., Mishra, S., Yadav, A. N. & Verma, P. (2017). Functional foods from cyanobacteria: an emerging source for functional food products of pharmaceutical importance. Microbial Functional Foods and Nutraceuticals, 21-37.
Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V. & Natarajan, C. (2010). Rediscovering cyanobacteria as valuable sources of bioactive compounds. Applied Biochemistry and Microbiology, 46(2), 119-134.
Rajabpour, N., Nowruzi, B. & Ghobeh, M. (2019). Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biologica Slovenica, 62(2), 3-14.
Řezanka, T. & Dembitsky, V. M. (2006). Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae. Folia Microbiologica, 51(3), 159-182.
Safavi, M., Nowruzi, B., Estalaki, S., & Shokri, M. (2019). Biological Activity of Methanol Extract from Nostoc sp. N42 and Fischerella sp. S29 Isolated from Aquatic and Terrestrial Ecosystems. International Journal on Algae, 21(4). 373-391.
Sathasivam, R., Radhakrishnan, R., Hashem, A. & Abd Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
Singh, S., Kate, B. N. & Banerjee, U. C. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology, 25(3), 73-95.
Zahra, Z., Choo, D. H., Lee, H. & Parveen, A. (2020). Cyanobacteria: Review of current potentials and applications. Environments, 7(2), 13.
_||_Abbaspour, S., Nowruzi, B. & Hamdi, S. M. (2020). Optimizing the Cultivation Conditions of Fischerella sp. SH. A Cyanobacterium for Maximizing Polysaccharide Production with Antibacterial Activity. Biological Journal of Microorganisms, 9(34), 23-53 [In Persian]
Ca Cyanobacterium for Maximizing Polysaccharide Production with Antibacterial Activity. rvalho, L. R., Costa-Neves, A., Conserva, G. A., Brunetti, R. L., Hentschke, G. S., Malone, C. F. & Rangel, M. (2013). Biologically active compounds from cyanobacteria extracts: in vivo and in vitro aspects. Revista Brasileira de Farmacognosia, 23(3), 471-480.
de Amarante, M. C. A., Braga, A. R. C., Sala, L. & Kalil, S. J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137, 109602.
Eghtedari, M., Porzani, S. J. & Nowruzi, B. (2021). Anticancer potential of natural peptides from terrestrial and marine environments: A review. Phytochemistry Letters. 42 (5), 87-103.
Encarnação, T., Pais, A. A., Campos, M. G. & Burrows, H. D. (2015). Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Science Progress, 98(2), 145-168.
Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1-14.
Gantar, M. & Svirčev, Z. (2008). Microalgae and cyanobacteria: food for thought 1. Journal of Phycology, 44(2), 260-268.
Guedes, A. C., Amaro, H. M. & Malcata, F. X. (2011). Microalgae as sources of high added‐value compounds—a brief review of recent work. Biotechnology Progress, 27(3), 597-613.
Guerreiro, A., Andrade, M. A., Menezes, C., Vilarinho, F. & Dias, E. (2020). Antioxidant and cytoprotective properties of cyanobacteria: Potential for biotechnological applications. Toxins, 12(9), 548.
He, X., Liu, Y. L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D. & Walker, H. W. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae, 54, 174-193.
Jaiswal, P., Singh, P. K. & Prasanna, R. (2008). Cyanobacterial bioactive molecules—an overview of their toxic properties. Canadian Journal of Microbiology, 54(9), 701-717.
Kultschar, B. & Llewellyn, C. (2018). Secondary metabolites in cyanobacteria. Secondary Metabolites—Sources and Applications, pp. 64.
Liu, L., Jokela, J., Wahlsten, M., Nowruzi, B., Permi, P., Zhang, Y. Z. & Sivonen, K. (2014). Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. Journal of Natural Products, 77(8), 1784-1790.
Liu, D., Liberton, M., Hendry, J. I., Aminian-Dehkordi, J., Maranas, C. D. & Pakrasi, H. B. (2021). Engineering biology approaches for food and nutrient production by cyanobacteria. Current Opinion in Biotechnology, 67, 1-6.
Martínez-Francés, E. & Escudero-Oñate, C. (2018). Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal Biotechnol, 6, 104-128.
Mysliwa-Kurdziel, B. & Solymosi, K. (2017). Phycobilins and phycobiliproteins used in food industry and medicine. Mini Reviews in Medicinal Chemistry, 17(13), 1173-1193.
Nicoletti, M. (2016). Microalgae nutraceuticals. Foods, 5(3), 54.
Nowruzi, B., Haghighat, S., Fahimi, H. & Mohammadi, E. (2018). Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research, 9(1), 5-12.
Nowruzi, B. & Blanco, S. (2019a). In silico identification and evolutionary analysis of candidate genes involved in the biosynthesis methylproline genes in cyanobacteria strains of Iran. Phytochemistry Letters, 29, 199-211.
Nowruzi, B., Wahlsten, M. & Jokela, J. (2019b). A report on finding a new peptide aldehyde from cyanobacterium nostoc sp. Bahar m by lc-ms and marfey’s analysis. Iranian Journal of Biotechnology, 17(2).
Nowruzi, B., Sarvari, G. & Blanco, S. (2020a). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959.
Nowruzi, B., Sarvari, G. & Blanco, S. (2020b). Applications of cyanobacteria in biomedicine. In Handbook of Algal Science, Technology and Medicine. pp. 441-453.
Nowruzi, B., Anvar, A. & Ahari, H. (2020c). Extraction, purification and evaluation of antimicrobial and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1. Journal of Microbial World, 13(2), 138-153.
Nowruzi, B., Fahimi, H. & Sturion Lorenzi, A. (2020d). Recovery of pure C-phycoerythrin from a limestone drought tolerant cyanobacterium Nostoc sp. and evaluation of its biological activity, 42, 115-128.
Panjiar, N., Mishra, S., Yadav, A. N. & Verma, P. (2017). Functional foods from cyanobacteria: an emerging source for functional food products of pharmaceutical importance. Microbial Functional Foods and Nutraceuticals, 21-37.
Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V. & Natarajan, C. (2010). Rediscovering cyanobacteria as valuable sources of bioactive compounds. Applied Biochemistry and Microbiology, 46(2), 119-134.
Rajabpour, N., Nowruzi, B. & Ghobeh, M. (2019). Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biologica Slovenica, 62(2), 3-14.
Řezanka, T. & Dembitsky, V. M. (2006). Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae. Folia Microbiologica, 51(3), 159-182.
Safavi, M., Nowruzi, B., Estalaki, S., & Shokri, M. (2019). Biological Activity of Methanol Extract from Nostoc sp. N42 and Fischerella sp. S29 Isolated from Aquatic and Terrestrial Ecosystems. International Journal on Algae, 21(4). 373-391.
Sathasivam, R., Radhakrishnan, R., Hashem, A. & Abd Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
Singh, S., Kate, B. N. & Banerjee, U. C. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology, 25(3), 73-95.
Zahra, Z., Choo, D. H., Lee, H. & Parveen, A. (2020). Cyanobacteria: Review of current potentials and applications. Environments, 7(2), 13.