بهینهسازی فرآیند خشک کردن پاششی جهت تولید پودرهای ریزدرون پوشانی شده عصاره فراسودمند استخراجی از چغندر لبویی
محورهای موضوعی : میکروبیولوژی مواد غذایی
1 - استادیار گروه علوم و مهندسی صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: آنتی اکسیدان, خشک کن پاششی, ریزدرون پوشانی, روش سطح پاسخ, عصاره چغندر قرمز, ویژگیهای فیزیکوشیمیایی,
چکیده مقاله :
مقدمه: خشک کردن پاششی یکی از مهمترین راههای جلوگیری از اتلاف محصولات غذایی استراتژیک و افزایش طول عمر آنها میباشد. بهینهسازی شرایط عملیاتی این سامانه میتواند بستر مناسبی جهت تولید فرآوردههایی با کیفیت فیزیکوشیمایی ایدهآل باشد. مواد و روشها: تاثیر سه پارامتر فرآیندی دما (160-130 درجه سانتیگراد) و سرعت جریان (4-2 مترمکعب بر ساعت) هوای ورودی و نرخ خوراک دهی (10-5 میلی لیتر بر دقیقه) جهت دستیابی به پودرهای فراسودمند ریزدرون پوشانی شده عصاره سرشار از رنگدانه فراسودمند بتالائین چغندر لبویی با روش سطح پاسخ مورد ارزیابی قرار گرفت. بازده پودرهای تولیدی، محتوای ترکیبات فنولی و فعالیت آنتیاکسیدانی عصاره بازسازی شده بهینه سازی گردید. یافتهها: معادلات درجه دوم با ضرایب همبستگی بالا (9940-960/0) به خوبی میتوانند شرایط بهینه جهت حصول بالاترین بازده فیزیکوشیمیایی را پیش بینی نمایند. افزایش دما و سرعت جریان هوای ورودی تاثیر معنیداری بر کاهش ترکیبات فنولی و آنتی اکسیدانی پودرهای بدست آمده داشته، در حالی که این روند سبب افزایش بازده تولیدی گشت. محتوای آنتی اکسیدانی و فنولی پودرهای ریز درون پوشانی شده با بازدهی کم در نرخهای بالاتر خوراک ورودی بهتر حفظ شدند. مشاهدات میکروسکوپی و اندازه ذرات نیز به طور بارزی یافتههای بدست آمده را تایید نمودند. یافتهها نشان داد که بالاترین راندمان فیزیکی (75%)، محتوای فنولی (72/1238 میکروگرم اسید گالیک بر میلی لیتر) و درصد بازدارندگی رادیکال آزاد (77/78%) میتواند در شرایط بهینه دمای هوای ورودی 136 درجه سانتیگراد، سرعت جریان هوای ورودی 6/3 مترمکعب بر ساعت و نرخ خوراک ورودی 8/8 میلی لیتر بر دقیقه بدست آید. نتیجه گیری: تولید با کیفیت پودرهای ریز درون پوشانی کننده عصاره چغندر قرمز تحتشرایط بهینه میتواند سرآغازی جهت توسعه غنی سازی فرآورده های غذایی با پودرهای بدست آمده محسوب گردد.
Introduction: Spray drying is one of the most important ways to prevent waste of strategic food products and their shelf life extension.Optimization of operating conditions involved in this system can be a suitable background to produce products with ideal physicochemical quality. Materials and Methods: The effect of three operating parameters including inlet air temperature (IAT, 130-160°C), air flow rate (AFR, 2-4 m3/h) and feed flow rate (FFR, 4-10 mL/min) was investigated to attain the microencapsulated powders of red-beet extract containing functional pigment of betalain using RSM. The yield of produced powders, content of phenolic compounds and antioxidant activity of reconstituted extract were optimized. Results: The quadratic equations with high correlation coefficients (0.960-0.994) can well predict the optimal conditions to achieve the highest physicochemical efficiency. An increase in IAT and AFR had a significant effect on the decrease of the level of phenolic and antioxidant components of the obtained powders, while this trend led to an increase in the yield. The antioxidant and phenolic content of microencapsulated powders with low yield at higher FFRs are well maintained. The analysis of microscopy observations and particle size also confirmed the results clearly. The findings showed that the maximum physical yield (75%), phenolics content (1238.72 µg gallic acid/mL), and free-radical inhibition percentage (78.77%) can be obtained under the optimum conditions of 136.0°C IAT, 3.6 m3/h AFR, and 8.8 mL/min FFR. Conclusion: Production of high-quality powders microencapsulating red-beet extract under the optimal conditions might be a beginning to develop fortification of food products with the obtained powders.
Anandharamakrishnan, C. & Padma Ishwarya S. (2015). Spray Drying Techniques for Food Ingredient Encapsulation (1st ed.), John Wiley & Sons, Ltd., USA.
Bhandari, B. R., Snoussi, A., Dumoline, E. D. & Lebert, A. (1993). Spray drying of concentrated fruit juices. Drying Technology, 11, 1081-1092.
Buchaillot, A., Caffin, N. & Bhandari, B. (2009). Drying of lemon myrtle (Backhousia citriodora) leaves: Retention of volatiles and color. Drying Technology, 27, 445-450.
Cai, Y. Z. & Corke, H. (2000). Production and properties of spray-dried amaranthus betacyanin pigments. Journal of Food Science, 65, 1248-1252.
Chegini, G. R. & Ghobadian, B. (2007). Spray dryer parameters for fruit juice drying. World Journal of Agricultural Sciences, 3, 230-236.
Cortez, R., Luna-Vital, D. A., Margulis, D. & de Mejia, E. G. (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16, 180-198.
Delgado-Vargas, F., Jiménez, A. R. & Paredes-López, O. (2000). Natural pigments: Carotenoids, anthocyanins, and betalains - characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40, 173-289.
Elbandy, M. A. & Abdelfadeil, M. G. (2008). Stability of betalain from red beet (Beta vulgaris). Egyptian Journal of Food Science, 36, 49 -60.
Ersus, S. & Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering, 80, 805-812.
Ersus, S. & Yurdagelu, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carotal) by spray drier. Journal of Food Engineering, 80, 805-812.
Gallo, L., Llabot, J. M., Allemandi, D., Bucalá, V. & Piña, J. (2011). Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties. Powder Technology, 208, 205-214.
Georgiev, V. G., Weber, J., Kneschke, E. M., Nedyalkov Denev, P., Bley, T. & Pavlov, A. I. (2010). Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods for Human Nutrition, 65, 105-111.
Gharibzahedi, S. M. T., Razavi, S. H. & Mousavi, S. M. (2015a). Optimization and kinetic studies on the production of intracellular canthaxanthin in fed-batch cultures of Dietzia natronolimnaea HS-1. Quality Assurance and Safety of Crops & Foods, 7, 757-767.
Gharibzahedi, S. M. T., Rostami, H. & Yousefi, S. (2015b). Formulation design and physicochemical stability characterization of nanoemulsions of nettle (Urtica dioica) essential oil using a model-based methodology. Journal of Food Processing and Preservation, 39, 2947-2958.
Goula, A. M., Adamopoulos, K. G., Chatzitakis, P. C. & Nikas, V. A. (2006). Prediction of lycopene degradation during a drying process of tomato pulp. Journal of Food Engineering, 74, 37-46.
Kha, T. C., Nguyen, M. H. & Roach, P. D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98, 385-392.
Kooshesh, S. & Golmakani, M. T. (2015). Optimization of microwave-assisted extraction of betalains from red beet (Beta vulgaris) and evaluating the antioxidant activity of obtained extract. Electronic Journal of Food Processing and Preservation, 7, 39-60.
Krishnaiah, D., Nithyanandam, R. & Sarbatly, R. (2014). A critical review on the spray drying of fruit extract: Effect of additives on physicochemical properties. Drying Technology, 54, 449-473.
Lu, X., Wang, J., Al-Qadiri, H. M., Ross, C. F., Powers, J. R., Tang, J., & Rasco, B. A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared Spectroscopy. Food Chemistry, 129, 637-644.
Manchali, S., Murthy, K. N. C., Nagaraju, S. & Neelwarne, B. (2012). Stability of betalain pigments of red beet. In: Neelwarne (Ed.), Red Beet Biotechnology: Food and Pharmaceutical Applications. New York, pp. 55-74.
Reddy, K. M., Ruby, L., Lindo, A. & Nair, G. M. (2005). Relative inhibition of lipid peroxidation, cyclooxygenase enzymes andhuman tumor cells prolifieration by natural food color. Journal of Agricultural and Food Chemistry, 53, 9268-9273.
Stintzing, F. C., Schieber, A. & Carle, R. (2003). Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research andTechnology, 216, 303-311.
Strack, D., Vogt, T. & Schliemann, W. (2003). Recent advances in betalain research. Phytochemistry, 62, 247-269.
Tee, L. H., Luqman Chuah, A., Pin, K. Y., Abdull Rashih, A. & Yusof, Y. A. (2012). Optimization of spray drying process parameters of Piper betle L. (Sirih) leaves extract coated with maltodextrin. Journal of Chemical and Pharmaceutical Research, 4, 1833-1841.
Telang, A. M. & Thorat, B. N. (2010). Optimization of process parameters for spray drying of fermented soy milk. Drying Technology, 28, 1445-1456.
Toneli, J., Park, K. J., Murr, F. & Negreiros, A. (2006). Spray drying optimization to obtain inulin powder. In: Proceedings of the 15th International Drying Symposium, Budapest, Hungary.
Tonon, R. V., Brabet, C. & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of acai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88, 411-418.
Tonon, R. V., Brabet, C. & Hubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried acai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43, 907-914.
Yousefi, Sh., Emam-Djomeh, Z., Mousavi, M., Kobarfard, F. & Zbicinski, I. (2014). Retention rate enhancement of antioxidant and cyaniding 3-o-glucoside components of the reconstituted product from spray-dried black raspberry juice by optimizing process parameters. Drying Technology, 32, 1683-1691.
Yousefi, Sh., Emam-Djomeh, Z., Mousavi, M., Kobarfard, F. & Zbicinski, I. (2015). Developing spray-dried powders containing anthocyanins of black raspberry juice encapsulated based on fenugreek gum. Advanced Powder Technology, 26, 462-469.
Zhou, X., Chen, S. & Yu, Z. (2004). Effects of spray drying parameters on the processing of a fermentation liquor. Biosystems Engineering, 88, 193-199.
_||_