کاربرد روشهای میکرواستخراج مایع-مایع مبتنی بر حلالهای اتکتیک عمیق در شناسائی آنتیبیوتیکها در شیر بهروش کروماتوگرافی: مطالعهی مروری
محورهای موضوعی : بهداشت مواد غذایی
جلیل خندقی
1
,
حمید میرزایی
2
,
Afshin Javadi
3
,
رامین عطازاده
4
,
Mohammadreza Afshar
5
1 - گروه علوم و صنایع غذایی، واحد سراب، دانشگاه آزاد اسلامی، سراب، ایران
2 - استاد گروه بهداشت مواد غذایی دانشکده دامپزشکی دانشگاه آزاد اسلامی علوم پزشکی تبریز
3 - Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
4 - عضو هیئت علمی گروه صنایع غذایی دانشگاه آزاد اسلامی واحد صوفیان
5 - مرکز تحقیقات ایمنی غذا و دارو
کلید واژه: ریزاستخراج فاز مایع, حلالهای اتکتیک عمیق, آنتیبیوتیک, شیر,
چکیده مقاله :
بقایای آنتیبیوتیک در محصولات غذایی خطرات قابل توجهای برای سلامت مصرفکنندگان ایجاد میکنند که عمدتاً از طریق ایجاد مقاومت ضد میکروبی موجب کاهش اثربخشی آنتیبیوتیکها در درمان عفونتها میشوند. وجود این ترکیبات در محصولات دامی مانند لبنیات، بر لزوم اعمال کنترلهای نظارتی دقیق و پایش مستمر در فرآیند تولید مواد غذایی تاکید میکند. تشخیص بقایای آنتیبیوتیک در مقادیر ناچیز در مواد غذایی نیازمند روشهای تحلیلی بسیار حساس و انتخابی است. در این میان، روشهای استخراج، به ویژه میکرواستخراج فاز مایع، با مزایایی همچون مصرف حداقلی حلال و فاکتورهای غنیسازی بالا، گزینهای ایدهآل برای تشخیص مقادیر کم آنتیبیوتیکها در نمونههای غذایی محسوب میشوند که منطبق با استانداردهای سختگیرانه بوده و میتواند از سلامت مصرفکنندگان حفاظت کند. حلالهای اتکتیک عمیق به عنوان جایگزینهای سبز و سازگار با محیط زیست برای حلالهای آلی معمول در آنالیز مواد غذایی مورد توجه قرار گرفتهاند. این ترکیبات به دلیل سمیت کم، قابلیت تجزیه زیستی و قابلیت تنظیم، کارایی استخراج ترکیبات آلی از ماتریکسهای پیچیده غذایی را افزایش میدهند. استفاده از این حلالها در ترکیب با روشهای میکرواستخراج، مصرف حلال را به حداقل رسانده و با اصول شیمی سبز سازگار است. این مطالعه ضمن بررسی پیامدهای مهم باقیماندههای آنتیبیوتیک در مواد غذایی بر سلامت عمومی، کاربرد حلالهای اتکتیک عمیق را برای آمادهسازی نمونه و استخراج این آلایندهها از ماتریکسهای پیچیده غذایی مورد بحث قرار میدهد. این مرور سیستماتیک بر پیشرفتهای اخیر (2025-2015) در روشهای میکرواستخراج فاز مایع مبتنی بر DES در ترکیب با روشهای کروماتوگرافی برای آنالیز بقایای آنتیبیوتیک در نمونههای شیر متمرکز است.
Antibiotic residues in food products pose significant risks to consumer health, primarily by contributing to antimicrobial resistance, which diminishes the efficacy of antibiotics in treating infections. The presence of these residues in animal-derived products such as dairies, underscores the need for stringent regulatory controls and monitoring in food production. The detection of trace-level antibiotic residues in foods requires highly sensitive and selective analytical methods. Extraction techniques, particularly liquid-phase microextraction (LPME), offers advantages such as minimal solvent use, and high enrichment factors, making it ideal for detecting ultra-trace antibiotics in food samples and supporting compliance with stringent standards and consumer health protection. Deep eutectic solvents (DES) have gained attention as green and eco-friendly alternatives to conventional organic solvents in food analysis due to their low toxicity, biodegradability, and tunable properties. Composed of hydrogen-bond donors and acceptors, DES enhance extraction efficiency of contaminants (e.g., pesticides, antibiotics) and bioactive compounds from complex food matrices. Coupled with microextraction techniques, DES minimize solvent consumption, aligning with green chemistry principles. This study discusses the critical public health implications of antibiotic residues in foods while highlighting the application of environmentally friendly deep eutectic solvents for sample preparation and extraction of these contaminants from complex food matrices. This review is focused on recent advancements (2015-2025) in DES-based liquid-phase microextraction techniques coupled with chromatographic analysis for the analysis of antibiotic residues in milk samples.
• Afshar Mogaddam, M., Khandaghi, J., and Vajdi HokmAbad, S. (2023). Use of Temperature-controlled Ionic Liquid-assisted Dispersive Liquid-Liquid Microextraction Method for the Detection of Amoxicillin, Cloxacillin and Erythromycin Residues in Cow Milk using High Performance Liquid Chromatography. Iranian Journal of Nutrition Sciences and Food Technology, 18(1): 119-126.
• Amchova, P., Kotolova, H., and Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory toxicology and pharmacology, 73(3): 914-922.
• Antos, J., García-Cansino, L., García, M. Á., Ginter-Kramarczyk, D., Marina, M. L., Zembrzuska, J., Câmara, J. S., and Pereira, J. A. (2024). Microextraction techniques for antibiotics surveillance in the food chain and environment. TrAC Trends in Analytical Chemistry, 118009.
• Bacanlı, M., and Başaran, N. (2019). Importance of antibiotic residues in animal food. Food and Chemical Toxicology, 125: 462-466.
• Barbayanov, K., Timofeeva, I., and Bulatov, A. (2022). An Effervescence-Assisted Three-Component Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction: Fluoroquinolones Determination in Foods. Talanta, 250: 123709.
• Bjelić, A., Hočevar, B., Grilc, M., Novak, U., and Likozar, B. (2022). A review of sustainable lignocellulose biorefining applying (natural) deep eutectic solvents (DESs) for separations, catalysis and enzymatic biotransformation processes. Reviews in Chemical Engineering, 38(3): 243-272.
• Buldini, P. L., Ricci, L., and Sharma, J. L. (2002). Recent applications of sample preparation techniques in food analysis. Journal of Chromatography a, 975(1): 47-70.
• Câmara, J. S., Perestrelo, R., Olayanju, B., Berenguer, C. V., Kabir, A., and Pereira, J. A. (2022). Overview of different modes and applications of liquid phase-based microextraction techniques. Processes, 10(7):1347.
• Cavazza, A., Mattarozzi, M., Franzoni, A., and Careri, M. (2022). A spotlight on analytical prospects in food allergens: From emerging allergens and novel foods to bioplastics and plant-based sustainable food contact materials. Food Chemistry, 388: 132951.
• Cherkashina, K., Pochivalov, A., Shakirova, F., Shishov, A. Y., and Bulatov, A. (2022). Microextraction of tetracyclines from milk to deep eutectic solvents for the subsequent determination by high-performance liquid chromatography–tandem mass spectrometry. Journal of Analytical Chemistry, 77(3): 334-341.
• Danner, M.-C., Robertson, A., Behrends, V., and Reiss, J. (2019). Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of the total environment, 664: 793-804.
• Dluhošová, S., Bartáková, K., Vorlová, L., Navrátilová, P., Hanuš, O., and Samková, E. (2024). Dairy Chain Safety in the Context of Antibiotic Residues—Current Status of Confirmatory Liquid Chromatography Methods: A Review. Antibiotics, 13(11): 1038.
• Dmitrienko, S., Apyari, V., Tolmacheva, V., and Gorbunova, M. (2020). Dispersive liquid–liquid microextraction of organic compounds: An overview of reviews. Journal of Analytical Chemistry, 75: 1237-1251.
• Espino, M., de los Ángeles Fernández, M., Gomez, F. J., and Silva, M. F. (2016). Natural designer solvents for greening analytical chemistry. TrAC Trends in Analytical Chemistry, 76: 126-136.
• Farajzadeh, M. A., Sorouraddin, S. M., and Afshar Mogaddam, M. R. (2014). Liquid phase microextraction of pesticides: a review on current methods. Microchimica Acta, 181: 829-851.
• Florindo, C., Lima, F., Ribeiro, B. D., and Marrucho, I. M. (2019). Deep eutectic solvents: overcoming 21st century challenges. Current Opinion in Green and Sustainable Chemistry, 18: 31-36.
• Gu, Y., Li, Y., Ren, D., Sun, L., Zhuang, Y., Yi, L., and Wang, S. (2022). Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. Food Frontiers, 3(3): 453-479.
• Hashemi, B., Zohrabi, P., Kim, K.-H., Shamsipur, M., Deep, A., and Hong, J. (2017). Recent advances in liquid-phase microextraction techniques for the analysis of environmental pollutants. TrAC Trends in Analytical Chemistry, 97: 83-95.
• Hou, L., Ji, Y., Zhao, J., and Zhao, L. (2022). Deep eutectic solvent based-ferrofluid ultrasonic-assisted liquid–liquid microextraction for determination of quinolones in milk samples. Microchemical Journal, 179: 107664.
• Jafar Nezhad, F., Mirzaei, H., Khandaghi, J., Mogaddam, M. R. A., and Javadi, A. (2024). Simultaneous extraction and derivatization of biogenic amines during in-situ deep eutectic solvent-based liquid phase extraction from Doogh samples prior to HPLC analysis. Microchemical Journal, 205: 111327.
• Kechagia, M., and Samanidou, V. (2017). Trends in microextraction-based methods for the determination of sulfonamides in milk. Separations, 4(3): 23.
• Khandaghi, J., Afshar Mogaddam, M. R., and Vajdi Hokmabad, S. (2023). Development of a deep eutectic solvent-based extraction method for determination of tetracycline, Oxytetracycline and Enrofloxacin residues in cheese sample by high performance liquid chromatography. Journal of food science and technology (Iran), 20(139): 79-92.
• Khataei, M. M., Epi, S. B. H., Lood, R., Spégel, P., Yamini, Y., and Turner, C. (2022). A review of green solvent extraction techniques and their use in antibiotic residue analysis. Journal of Pharmaceutical and Biomedical Analysis, 209: 114487.
• Kiszkiel-Taudul, I., and Stankiewicz, P. (2023). Microextraction of tigecycline using deep eutectic solvents and its determination in milk by LC-MS/MS method. Journal of Agricultural and Food Chemistry, 71(30): 11716-11725.
• Kiszkiel-Taudul, I., Starczewska, B., and Jarosz, M. (2023). Microextraction of ampicillin from bovine milk using ionic liquids and deep eutectic solvents prior to its chromatographic determination with ultraviolet and tandem mass spectrometry detection. Journal of Food Composition and Analysis, 115, 104944.
• Kokosa, J. M. (2013). Advances in solvent-microextraction techniques. TrAC Trends in Analytical Chemistry, 43: 2-13.
• Kurashov, Y., Pochivalov, A., Petrova, A., Safonova, E., Garmonov, S., and Bulatov, A. (2024). Supramolecular solvents based on hydrophobic natural deep eutectic solvents and primary amines for preconcentration and determination of enrofloxacin in milk. Talanta, 279: 126666.
• Lesan, S., Mirzaei, H., Khandaghi, J., Afshar Mogaddam, M. R., and Javadi, A. (2023). Development of deep eutectic solvent based pressurized liquid extraction combined with dispersive liquid–liquid microextraction; application in extraction of aflatoxins from rice samples before HPLC–FLD. Microchemical Journal, 190: 108554.
• Limoei Khosrowshahi, B., Marzi Khosrowshahi, E., Afshar Mogaddam, M., and Khandaghi, J. (2022). Use of Dispersive Solid-Phase Extraction in Combination with Dispersive Liquid-Liquid Microextraction for the Assessment of Organophosphorus Pesticides in Fruit Juice Samples Using Gas Chromatography-Nitrogen-Phosphorus Detector. Iranian Journal of Nutrition Sciences & Food Technology, 17 (2): 87-98. [In Persian]
• Majdinasab, M., Mishra, R. K., Tang, X., and Marty, J. L. (2020). Detection of antibiotics in food: New achievements in the development of biosensors. TrAC Trends in Analytical Chemistry, 127: 115883.
• Meng, L., Tan, Y., and Xiao, W. (2025). Determination of Norfloxacin and Enrofloxacin in milk using deep eutectic solvent-based ferromagnetic fluid by UV-HPLC. Journal of Dispersion Science and Technology, 46(5): 851-860.
• Mitra, S., and Brukh, R. (2003). Sample preparation: an analytical perspective. John Wiley pub. New Jersey, pp. 12-35.
• Mohebi, A., Samadi, M., Tavakoli, H. R., and Parastouei, K. (2020). Homogenous liquid–liquid extraction followed by dispersive liquid–liquid microextraction for the extraction of some antibiotics from milk samples before their determination by HPLC. Microchemical Journal, 157: 104988.
• Montone, C. M., Moneta, B. G., Laganà, A., Piovesana, S., Taglioni, E., and Cavaliere, C. (2024). Transformation products of antibacterial drugs in environmental water: identification approaches based on liquid chromatography-high resolution mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 238: 115818.
• Nie, J., Yu, G., Song, Z., Wang, X., Li, Z., She, Y., and Lee, M. (2017). Microwave-assisted deep eutectic solvent extraction coupled with headspace solid-phase microextraction followed by GC-MS for the analysis of volatile compounds from tobacco. analytical methods, 9(5): 856-863.
• Nodrati, A., Haghighat, A., Afshar Moghaddam, M., and Khandaghi, J. (2024). Combination of Liquid-phase Extraction with Dispersive Liquid-liquid Micro-extraction for the Assessment of Polycyclic Aromatic Hydrocarbons in Honey Sample Using High-performance Liquid Chromatography. Iranian Journal of Nutrition Sciences and Food Technology, 18(4): 93-102. [In Persian]
• Pochivalov, A., Cherkashina, K., Shishov, A., and Bulatov, A. (2021). Microextraction of sulfonamides from milk samples based on hydrophobic deep eutectic solvent formation by pH adjusting. Journal of Molecular Liquids, 339: 116827.
• Rasi, H., AfsharMogaddam, M., and Khandaghi, J. (2021). Application of a new extraction method coupled to high performance liquid chromatography for tetracyclines monitoring in cow milk. Journal of food science and technology (Iran), 18(113): 339-349. [In Persian]
• Rezaee, M., Assadi, Y., Hosseini, M.R.M., Aghaee, E., Ahmadi, F., and Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography a, 1116(1-2): 1-9.
• Sereshti, H., Jazani, S. S., Nouri, N., and Shams, G. (2020). Dispersive liquid–liquid microextraction based on hydrophobic deep eutectic solvents: application for tetracyclines monitoring in milk. Microchemical Journal, 158: 105269.
• Sereshti, H., Zarei-Hosseinabadi, M., Soltani, S., and Taghizadeh, M. (2022). Green vortex-assisted emulsification microextraction using a ternary deep eutectic solvent for extraction of tetracyclines in infant formulas. Food Chemistry, 396: 133743.
• Shaaban, H., Mostafa, A., Alqarni, A. M., Alsultan, R., Aljarrash, Z., Al-Zawad, W., Al-Kahlah, S., and Amir, M. (2023). Dispersive liquid-liquid microextraction utilizing menthol-based deep eutectic solvent for simultaneous determination of sulfonamides residues in powdered milk-based infant formulas. Journal of Food Composition and Analysis, 117: 105137.
• Tajallayi, M., Haghighat Asiabar, A., Afshar Mogaddam, M., and Khandaghi, J. (2023). Development of Dispersive Solid-phase Extraction Combined with Air-assisted Liquid-Liquid Microextraction for Determination of Sulfonamide Residues in Pasteurized Milk Samples using High Performance Liquid Chromatography. Journal of Food Technology and Nutrition, 21(1): 5-16. [In Persian]
• Tajick, M., and Shohreh, B. (2006). Detection of antibiotics residue in chicken meat using TLC. International journal of poultry science, 5(7): 611-612.
• Xu, J., Zhang, Y., Zhou, C., Guo, C., Wang, D., Du, P., Luo, Y., Wan, J., and Meng, W. (2014). Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Science of the total environment, 497: 267-273.
• Yu, K., Yue, M.-E., Xu, J., and Jiang, T.-F. (2020). Determination of fluoroquinolones in milk, honey and water samples by salting out-assisted dispersive liquid-liquid microextraction based on deep eutectic solvent combined with MECC. Food Chemistry, 332: 127371.
• Zare Sani, M., Afshar Mogaddam, M. R.., and Khandaghi, J. (2023). Combination of cold induced HLLME with an effervescence-assisted DLLME based on deep eutectic solvent decomposition; application in extraction of some pyrethroid and carbamate pesticides from edible oils. International Journal of Environmental Analytical Chemistry, 103(18): 6367-6382.
