تاثیر اشعه ماورای بنفش بر میکروارگانیسم¬های پاتوژن تلقیح¬شده در شیر، آب¬میوه سنتی و آب شرب
رضا نوش آباد
1
(
ندام
)
سید مجید هاشمی
2
(
گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه آزاد شهرکرد، ایران.
)
کلید واژه: اشرشیاکلای, سالمونلا, استافیلوکوکوس اورئوس, لیستریا مونوسیتوژنز, اشعه ماورای بنفش,
چکیده مقاله :
به دلیل افزایش تقاضای مصرف¬کنندگان برای محصولات طبیعی¬تر و سالم¬تر، فناوری¬های غیرحرارتی به شدت مورد مطالعه قرار گرفته¬اند. هدف از اعمال این فناوری کاهش یا حذف بار میکروبی مواد غذایی است. در همین راستا، هدف از پژوهش حاضر تاثیر اشعه ماورای بنفش بر باکتری¬های تلقیح¬شده به شیر، آب¬میوه و آب¬شرب می¬باشد. ابتدا نمونه¬های شیر خام، آب¬میوه و آب¬شرب را نمونه¬گیری و جهت آماده¬سازی به آزمایشگاه انتقال داده شد. نمونه¬ها قبل از تلقیح باکتری¬های اشرشیاکلای، سالمونلا، استافیلوکوکوس اورئوس و لیستریا مونوسیتوژنز استریل شدند و پس از اطمینان از استریلیزه¬شدن، مقدار مشخصی از باکتری¬ها به نمونه¬ها اضافه و از دستگاه تابش UV عبور داده و جمعیت باکتری¬ها در زمان¬ بعد از تابش شمارش شد. ¬برای این کار مدت زمان 30، 60 و 120 ثانیه در تابش مستمر اعمال شد. از نرم افزار اکسل برای رسم نمودارها و آنالیزآماری چند دامنه¬ای دانکن استفاده شد. نتایج نشان داد، درمدت زمان¬ 30 ثانیه طی رقت¬های متوالی اختلاف آماری معنی¬داری در تمام نمونه¬ها مشاهده شد (05/¬0¬p>)، بالاترین میانگین آلودگی مربوط به رقت اول در اشرشیاکلای 39/1¬±¬78/6 و کمترین میانگین آلودگی مربوط به رقت سوم در استافیلوکوکوس اورئوس¬ 06/0 ± 77/0 بود. با توجه به نتایج حاصل چنانچه این روش به صورت دقیق به محلول¬های غذایی تابیده شود، می¬تواند تاثیر مثبتی در روند کاهش آلودگی¬ به باکتری¬های پاتوژن داشته باشد.
چکیده انگلیسی :
Due to the increase in consumer demand for more natural and healthier products, non-thermal technologies have been intensively studied. The purpose of applying this technology is to reduce or eliminate the microbial load of food. In this regard, the aim of this research is the effect of ultraviolet rays on bacteria inoculated into milk, fruit juice and drinking water. First, samples of raw milk, fruit juice and drinking water were taken and transferred to the laboratory for preparation. The samples were sterilized before the inoculation of Escherichia coli, Salmonella, Staphylococcus aureus and Listeria monocytogenes bacteria, and after ensuring sterilization, a certain amount of bacteria was added to the samples and passed through the UV radiation device and the bacterial population It was counted in the time after irradiation. For this purpose, the duration of 30, 60 and 120 seconds in continuous radiation was applied. Excel software was used to draw graphs and Duncan's multi-domain statistical analysis. The results showed that a statistically significant difference was observed in all samples within 30 seconds during consecutive dilutions (p>0.05), the highest mean contamination related to the first dilution in Escherichia coli was ±1.39. 6.78, and the lowest average contamination related to the third dilution in Staphylococcus aureus was 0.77 ± 0.06. According to the results, if this method is accurately applied to food solutions, it can have a positive effect on the process of reducing contamination with pathogenic bacteria
ACEVEDO, B. A., SGROPPO, S. C. & DELLACASSA, E. 2018. Effects of ultraviolet radiation on the microbiological, physicochemical, and sensory properties of Rangpur lime juice.
ATIK, A. & GUMUS, T. 2021. The effect of different doses of UV-C treatment on microbiological quality of bovine milk. LWT, 136, 110322.
BAIS, A. F., BERNHARD, G., MCKENZIE, R. L., AUCAMP, P., YOUNG, P. J., ILYAS, M., JÖCKEL, P. & DEUSHI, M. 2019. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochemical & Photobiological Sciences, 18, 602-640.
BERNARD, J. J., GALLO, R. L. & KRUTMANN, J. 2019. Photoimmunology: how ultraviolet radiation affects the immune system. Nature Reviews Immunology, 19, 688-701.
BRIÑEZ, W. J., ROIG-SAGUÉS, A. X., HERRERO, M. M. H. & LÓPEZ, B. G. 2006. Inactivation by ultrahigh-pressure homogenization of Escherichia coli strains inoculated into orange juice. Journal of food protection, 69, 984-989.
BUHLER, S., SOLARI, F., GASPARINI, A., MONTANARI, R., SFORZA, S. & TEDESCHI, T. 2019. UV irradiation as a comparable method to thermal treatment for producing high quality stabilized milk whey. Lwt, 105, 127-134.
DELORME, M. M., GUIMARÃES, J. T., COUTINHO, N. M., BALTHAZAR, C. F., ROCHA, R. S., SILVA, R., MARGALHO, L. P., PIMENTEL, T. C., SILVA, M. C. & FREITAS, M. Q. 2020. Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in food science & technology, 102, 146-154.
FÜRST, P. 2023. Human milk surveys on persistent organic pollutants from a historical perspective. Persistent organic pollutants in human milk. Springer.
GH, S. K. A. & JAHANBANI, N. 2002. Microbiological quality of juice and ice cream in Ghoram Abad City. Yafteh J, 4, 11-16.
GUNTER‐WARD, D. M., PATRAS, A., S. BHULLAR, M., KILONZO‐NTHENGE, A., POKHAREL, B. & SASGES, M. 2018. Efficacy of ultraviolet (UV‐C) light in reducing foodborne pathogens and model viruses in skim milk. Journal of Food Processing and Preservation, 42, e13485.
HAIN, T., CHATTERJEE, S. S., GHAI, R., KUENNE, C. T., BILLION, A., STEINWEG, C., DOMANN, E., KÄRST, U., JÄNSCH, L. & WEHLAND, J. 2007. Pathogenomics of Listeria spp. International Journal of Medical Microbiology, 297, 541-557.
HEIDARZADI, M., RAHNAMA, M., ALIPOURESKANDANI, M., SAADATI, D. & AFSHARIMOGHADAM, A. 2021. Salmonella and Escherichia coli contamination in samosas presented in Sistan and Baluchestan province and antibiotic resistance of isolates. Food Hygiene, 11, 81-90.
KALININ, E. V., CHALENKO, Y. M., KEZIMANA, P., STANISHEVSKYI, Y. M. & ERMOLAEVA, S. A. 2023. Combination of growth conditions and InlB-specific dot-immunoassay for rapid detection of Listeria monocytogenes in raw milk. Journal of Dairy Science, 106, 1638-1649.
KEKLIK, N. M., DEMIRCI, A., PURI, V. M. & HEINEMANN, P. H. 2012. Modeling the inactivation of Salmonella Typhimurium, Listeria monocytogenes, and Salmonella Enteritidis on poultry products exposed to pulsed UV light. Journal of food protection, 75, 281-288.
KEYSER, M., MŰLLER, I. A., CILLIERS, F. P., NEL, W. & GOUWS, P. A. 2008. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative food science & emerging technologies, 9, 348-354.
LEE, B., KERMASHA, S. & BAKER, B. 1989. Thermal, ultrasonic and ultraviolet inactivation of Salmonella in thin films of aqueous media and chocolate. Food Microbiology, 6, 143-152.
LLOYD, E. C., MARTIN, E. T., DILLMAN, N., NAGEL, J., CHANG, R., GANDHI, T. N. & TRIBBLE, A. C. 2021. Impact of a best practice advisory for pediatric patients with Staphylococcus aureus bacteremia. Journal of the Pediatric Infectious Diseases Society, 10, 282-288.
MATAK, K., CHUREY, J., WOROBO, R., SUMNER, S., HOVINGH, E., HACKNEY, C. & PIERSON, M. 2005. Efficacy of UV light for the reduction of Listeria monocytogenes in goat's milk. Journal of Food Protection, 68, 2212-2216.
OCHOA-VELASCO, C. E., CRUZ-GONZÁLEZ, M. & GUERRERO-BELTRÁN, J. Á. 2014. Ultraviolet-C light inactivation of Escherichia coli and Salmonella typhimurium in coconut (Cocos nucifera L.) milk. Innovative Food Science & Emerging Technologies, 26, 199-204.
ROSSITTO, P., CULLOR, J., CROOK, J., PARKO, J., SECHI, P. & CENCI-GOGA, B. T. 2012. Effects of UV irradiation in a continuous turbulent flow UV reactor on microbiological and sensory characteristics of cow's milk. Journal of food protection, 75, 2197-2207.
TURNER, J., IGOE, D., PARISI, A. V., MCGONIGLE, A. J., AMAR, A. & WAINWRIGHT, L. 2020. A review on the ability of smartphones to detect ultraviolet (UV) radiation and their potential to be used in UV research and for public education purposes. Science of the Total Environment, 706, 135873.
USAGA BARRIENTOS, J. & WOROBO, R. W. 2018. Microbial safety and quality evaluation of UV-Treated, cold-pressed colored and turbid juices and beverages.
WALKLING-RIBEIRO, M., NOCI, F., CRONIN, D., RIENER, J., LYNG, J. & MORGAN, D. 2008. Reduction of Staphylococcus aureus and quality changes in apple juice processed by ultraviolet irradiation, pre-heating and pulsed electric fields. Journal of Food Engineering, 89, 267-273.
WOUDSTRA, S., WENTE, N., ZHANG, Y., LEIMBACH, S., GUSSMANN, M., KIRKEBY, C. & KRÖMKER, V. 2023. Strain diversity and infection durations of Staphylococcus spp. and Streptococcus spp. causing intramammary infections in dairy cows. Journal of Dairy Science, 106, 4214-4231.
WRIGHT, J., SUMNER, S., HACKNEY, C., PIERSON, M. & ZOECKLEIN, B. 2000. Efficacy of ultraviolet light for reducing Escherichia coli O157: H7 in unpasteurized apple cider. Journal of food protection, 63, 563-567.