بررسی اثر نانو ذرات نقره تولیدی از مایع رویی لاکتوباسیلوس پلانتاروم بر باکتریهای بیماریزای شاخص
محورهای موضوعی :
بیوتکنولوژی و میکروبیولوژی موادغذایی
علی سرداریان
1
,
اسماعیل عطای صالحی
2
,
اکرم آریان فر
3
,
رضا صفری
4
1 - دانشجوی دکتری، گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
2 - دانشیار، ﮔﺮوه ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ، واﺣﺪ ﻗﻮﭼﺎن، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ، ﻗﻮﭼﺎن، اﯾﺮان.
3 - استادیار، ﮔﺮوه ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ، واﺣﺪ ﻗﻮﭼﺎن، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ، ﻗﻮﭼﺎن، اﯾﺮان.
4 - پژوهشکده اکولوژی دریای خزر، مؤسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، ساری، ایران.
تاریخ دریافت : 1400/06/12
تاریخ پذیرش : 1400/07/07
تاریخ انتشار : 1402/10/01
کلید واژه:
لاکتوباسیلوس پلانتاروم,
نانو ذرات نقره,
باکتری های بیماری زا,
مایع رویی,
چکیده مقاله :
این پژوهش با هدف بررسی اثر نانو ذرات نقره تولیدی لاکتوباسیلوس پلانتاروم به دست آمده از دستگاه گوارش ماهی قزل آلای رنگین کمان بر باکتریهای بیماریزای شاخص انجام شد. بدین منظور پس از جداسازی، شناسایی و تایید جنس و گونه لاکتوباسیلوس پلانتاروم، اثرات مهار کننده دو غلظت از نانوذرات نقره (50 و 100 میکرولیتر) استخراج شده از مایع رویی لاکتوباسیلوس پلانتاروم، نیترات نفره و آنتی بیوتیکهای سیپروفلوکساسین و آمیکاسین بر باکتریهای بیماریزای شاخص استافیلو کوکوس اورئوس، باسیلوس سرئوس، باسیلوس سوبتیلیس، سودوموناس آئروجینوزا و اشرشیا کلی به روش انتشار در محیط آگار و ماکرودایلوشن(تعیین حداقل غلظت مهارکنندگی یا MIC و کشندگی یا MBC ( مورد بررسی قرار گرفت. نتایج نشان داد بیشترین جذب نوری برای نانو ذرات نقره در طول موج 510 نانومتر بودکه تائید کننده تولید نانو ذره می باشد (با 3 تکرار). شکل نانو ذره نقره به صورت کروی و اندازه آن بین 58/3 -27/5 نانومتر بود. اختلاف بین اثرات ضد میکروبی آنتی بیوتیک های منتخب و نانو ذرات نقره معنی دار بود (05/0 >P ). به طوری که تیمار آمیکاسین بیشترین تعداد و نیترات نقره و غلظت 50 نانوذرات نقره کمترین تعداد باسیلوس سوبتیلیس، سودوموناس آئروجینوزا، اشرشیا کلی، استافیلوکوکوس اورئوس و باسیلوس سرئوس را دارا بودند. در خصوص تاثیر ضد باکتریایی نانو ذره نقره در بین باکتری های مورد بررسی استافیلو کوکوس اورئوس حساس ترین و سودوموناس آئروجینوزا مقاوم ترین باکتری بودند به طوری که کمترین غلظت مهار کننده نانو ذرات نقره برای استافیلو کوکوس اورئوس و سودو موناس آئروجینوزا به ترتیب 5/2 و 10 و کمترین غلظت کشندگی نیز به ترتیب 10 و 40 میکرو گرم بر میلی لیتر بود باتوجه به اثرات ضد میکروبی نانو ذره نقره می توان از آن به عنوان مواد ضد میکروبی در فرمولاسیون انواع مواد ضد عفونی کننده و آنتی سپتیک ها استفاده نمود.
منابع و مأخذ:
Ahmad, A., Mukherjee, P., Mandal, D., Senapati, S., Khan, M. I., Kumar, R. and Sastry, M. 2002. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. Journal of the American Chemical Society, 124(41): 12108-12109.
Begam, J. N. 2016. Biosynthesis and characterization of silver nanoparticles (AgNPs) using marine bacteria against certain human pathogens. Journal of Nasrin /International Journal of Advances in Scientific Research, 2(7): 152-156.
Bosetti, M., Masse, A., Tobin, E. and Cannas, M. 2002. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials, 23(3): 887-92.
Braydich-Stolle, L., Hussain, S., Schlager, J. J. and Hofmann, M. 2005. In Vitro Cytot oxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxocological Sciences, 88(2): 412-419.
Cheng, H. R. and Jiang, N. 2006. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnology Letters, 28: 55-59.
Cho, K. H., Park, J. E., Osaka, T. and Park, S. G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Journal of Electrochimica Acta, 51: 956-960.
Christian, P., Von der Kammer, F., Baalousha, M. and Hofmann, T. 2008. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology, 17(5): 326-343.
Dada, A. O., Adekola, F. A., Dada, F. E., Adelani-Akande, A. T., Bello, M. O., Okonkwo, C. R. and Adetunji, C. O. 2019. Silver nanoparticle synthesis by Acalypha wilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon, 5(10): e02517.
El-Batal, A., Amin, M., Shehata, M. M. and Hallol, M. M. 2013. Synthesis of silver nanoparticles by Bacillus stearothermophilus using gamma radiation and their antimicrobial activity. World Applied Sciences Journal, 22(1): 1-16.
Goodman & Gilman's: Chapter 54: Aminoglycosides. 2011 The Pharmacological Basis of Therapeutics (Editors: L. Brunton, B. A. Chabner, B. C. Knollmann). 12 ed. New York: McGraw-Hill, pp. 1507–1517.
Hoseynzadeh, A., Khaleghi, M. and Sasan, H. 2017. Investigating the Antimicrobial Effects of Silver Nanoparticles Synthesized by Bacteria Isolated from Agricultural Soils of Kerman, Iran. Iranian Journal of
Medical Microbiology, 11(5) :136-148.
Japani, A., Farshad, S. and Alborzi, A. 2009. Pseudomonas aeruginosa: Burn Infection, Treatment and Antibacterial Resistance. Iranian Red Crescent Medical Journal, 11(3): 244-253.
Jianrong, Zh., Gao, L. and Minghai, Ch. 2006. SPS curing of high density antimony, tin-doped ceramic oxide. Journal of Nanoparticles SOC, 89:3874-3876.
Kalimuthul, K., Babu, R. S., Venkataraman, D., Bilal, M. and Gurunathan, S. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces, 65(1): 150-153.
Kalimuthu, K., Cha, B. S., Kim, S. and Park, K. S. 2020. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchemical Journal, 152: 104296.
Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J. and Srinivasan, K. 2011. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc, 79(3): 594-598.
Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, P., Lee, H. J., et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol, 3: 95-101.
Lambert, P. A. 2002. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. Journal of the Royal Society of Medicine, 95(41): 22-26.
Maghsoudy, N., Aberoomand Azar, P. and Saber Tehrani, M. 2019. Biosynthesis of Ag and Fe nanoparticles using Erodium cicutarium; study, optimization, and modeling of the antibacterial properties using response surface methodology. Journal of Nanostructure in Chemistry, 9: 203–216.
Mahmoud, W. M., Abdelmoneim, T. S. and Elazzazy, A. M. 2015. The impact of silver nanoparticles produced by Bacillus pumilus as antimicrobial and nematicide. Frontiers in Microbiology, 7: 1-9.
Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G. and Mukherjee, P. 2006. The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69(5): 485-492.
Moudgi, B. M. and Roberts, S. M. 2006. Designing a Strategies for Safety Evaluation of Nanomaterials. Part Nano-Interface in a Microfluidic Chip to Probe Living VI. Chara cterization of Nanoscale Particles for Cells: Challenges and Perspectives. Toxicological Sciences USA, 103: 6419-6424.
Nakagawa, Y. K., Shimazu, M. and Ebihara, K. 1999. Nakagawa Aspergillus Niger Pneumonia with Fatal Pulmonary System. Journal of Infection and Chemotherapy, 5(2): 97-100.
Nanda, P. and Jagadeesh Babu, P. E. 2014. Isolation, screening and production studies of uricase producing bacteria from poultry sources. Preparative Biochemistry and Biotechnology, 44(8): 811-821.
Panacek, A., Kvítek, L., Prucek, R., Kolar, M., Veerová, R., Pizurova, N., Sharma, V. K., Tatjana, N. and Zboril, R. 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110: 16248-16253.
Pérez-Sánchez, T., Balcázar, J. L., Merrifield, D. L., Carnevali, O., Gioacchini, G., de Blas, I. and Ruiz Zarzuela, I. 2011. Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish & Shellfish Immunology, 31: 196-201.
Popoola, A. and Adebayo-Tayo, B. Ch. 2017. Biogenic synthesis and antimicrobial activity of silver nanoparticle using exopolysaccharides from lactic acid bacteria. International Journal of Nano Dimension, 8(1): 61-69.
Roomiani, L. 2012. Study of effect Rosmarinus officinalis and nisin on the growth of Streptococcus iniae in lab conditions and fillet of rainbow trout (Oncorhynchus mykiss). Thesis of Fisheries. Islamic Azad University. Science and Research Branch of Tehran.
Salmani, M. 2017. Survey of Silver Nanoparticles Antibacterial Activity Against Gram-Positive and Gram-negative Bacteria in Vitro. The Journal of Toloo-e-behdasht, 16(1): 74-84.
Saravanan, M., Vemu, A. K. and Barik, S. K. 2011. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathog. Colloids Surf B Biointerfaces, 88(1): 325-331.
Shiva Karkaj, U. A., Salavati, M., Sarvari, R. and Khadivi Derakhshan, F. 2011. Bioproduction of silver nanoparticles isolated by Bacillus bacterium isolated from Sungun copper mine. Pazhohandeh (Research Journal of Shahid Beheshti University of Medical Sciences), 87: 142-147.
Singh, P., Singh, H., Kim, Y. J., Mathiyalagan, R., Wang, C. and Yang, D. C. 2016. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme and Microbial Technology, 86: 75-83.
Singh, R., Wagh, P., Wadhwani, S., Gaidhani, S., Kumbhar, A., Bellare, J., et al. 2013. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International Journal of Nanomedicine, 8: 4277.
Sreemanti, D., Das, J., Samadder, A., Bhattacharyya, S. S., Das, D. and Khuda, A. R. 2013. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadesis and Thuja occidentalis induce differential cytotaxicity through G2/M arrest in A375 cells. Colloids Surf B: Biointerfaces, 101: 325-336.
Veisi Malekshahi, Z., Afshar, D., Ranjbar, R., Shirazi, M. H., Rezaei, F., Mahboobi, R., et al. 2012. Antimicrobial effect of Zinc Oxide nanoparticle. Infection and Tropical Disease, 17(59): 1-4.
_||_