Reassessment of Bioclimatic Components in Sustainable Architecture: A Case Study of Tehran Metropolis
Subject Areas : Urban FuturologyHamidreza Hosseinkhani 1 * , Masoumeh Davoudifar 2
1 - Department of Architecture, SR.C., Islamic Azad University, Tehran, Iran.
2 - Department of Architecture, SR.C., Islamic Azad University, Tehran, Iran.
Keywords: Sustainable Architecture, Energy, Environment, Human-Made Structures, Thermal Comfort, Tehran.,
Abstract :
In the contemporary era, sustainable architecture has emerged as a novel paradigm in design and construction, emphasizing the creation of a balanced and harmonious coexistence between human-made structures and the natural environment. Within this framework, the precise identification and comprehensive analysis of bioclimatic components play a pivotal role in achieving sustainability goals. This study focuses on Tehran, Iran’s metropolitan capital, as a prime example of cities with highly variable climates, to investigate and map these critical components. The primary objective of this research is to identify, analyze, and evaluate the influence of climatic factors—including solar radiation, wind patterns, temperature fluctuations, and humidity levels—on the design and performance of sustainable architecture in Tehran. Employing a mixed-methods approach that integrates qualitative and quantitative research methodologies, climatic data for Tehran are collected via meteorological stations and climate simulation software, followed by systematic analysis. Additionally, case studies of sustainable architectural projects in Tehran are examined through literature reviews and expert research. The findings of this study are intended to serve as a comprehensive, practical guide for architects, urban planners, and policymakers in designing and constructing sustainable structures tailored to Tehran’s unique climate. Such efforts are expected to yield significant reductions in energy consumption, thereby curbing greenhouse gas emissions and mitigating environmental pollution. Furthermore, by improving air quality and optimizing water resource management, this approach promises to enhance public health and urban livability. Ultimately, this research represents a critical step toward advancing sustainable architecture and fostering environmentally compatible urban development in metropolitan Tehran.
منابع
بسطامی جو، مصطفی؛ و افضلی، سید فخرالدین. (1404). ارزیابی شرایط آسایش انسانی بر اساس شاخص های زیست اقلیمی (مطالعه موردی: شهر توریستی سی سخت). فصلنامه مطالعات توسعه پایدار شهری و منطقه ای، 6(4)، 114-126. https://www.srds.ir/article_219757.html
بهنام، مهسا. (1403). بازشناخت مولفه های فرهنگ و هویت در معماری بومی نمونه موردی:جزیره کیش. جغرافیا و روابط انسانی، 7(1)، 333-357. doi: 22034.10/gahr.467125.2024.2201
دلفانیان، حمیدرضا؛ خاکزند، مهدی؛ و کامیابی، سعید. (1397). مروری بر رابطه معماری بومی و اقلیم با بررسی شاخصهای آسایش حرارتی، مورد مطالعاتی: شهر نوشهر. معماری و شهرسازی آرمان شهر، 11(25)، 69-79. https://www.armanshahrjournal.com/article_85055.html?lang=en
ذوالفقاری طهرانی، مهدیه؛ مهدوینژاد، محمدجواد؛ انصاری، مجتبی؛ و منصوری، بهروز. (1403). شاخص های موثر در بازتعریف معماری ایرانی به عنوان معماری زیست سازگار و دوستدار طبیعت. نقش جهان - مطالعات نظری و فناوری های نوین معماری و شهرسازی، ۱۴(۲)، ۱-۲۰. https://bsnt.modares.ac.ir/article-2-72457-fa.html
علیزاد گوهری، نغمه؛ شاهدی، بهرام؛ احمدی، فرشته. (1402). تحلیل مولفههای فضایی تاثیرگذار بر حضورپذیری فضاهای تجاری بر پایه روابط غیرشکلی؛ نمونه موردی: بازار اصفهان. نقش جهان - مطالعات نظری و فناوری های نوین معماری و شهرسازی، ۱۳(۳)، ۳۰-۵۰. http://dorl.net/dor/1001.20.23224991.1.13.1402.2.3.3
کامیابی، سعید؛ و میرزائی، ندا. (1394). تطبیق معماری با اقلیم بر اساس شاخص های حرارتی نمونه موردی: اقلیم سرد و خشک مشهد. مطالعات فرهنگی اجتماعی خراسان، 10(2)، 119-141. https://www.farhangekhorasan.ir/article_13894.html
References:
Alexandrou, E., Bougiatioti, F., Katsaros, M., Kotsenos, A., & Zacharopoulos, E. (2022). Sustainability challenges in architectural education: assessment of an architectural technology course on the bioclimatic redesign of existing buildings in Greece. Int. J. Sustainable Energy, 41(6)T 609- 628. https://doi.org/1080.10/2021.14786451.1962880
Alizad Gohari, N., Shahedi, B., & Ahmadi, F. (2023). Analysis of Spatial Components Affecting the Presence of Commercial Spaces, Based on Non-Formal Relationships; Case Study: Isfahan Bazaar. Naqshejahan, 13(3), 30-50. http://dorl.net/dor/1001.20.23224991.1.13.1402.2.3.3 [In Persian]
ASHRAE. (2017). ASHRAE Standard 55: Thermal environmental conditions for human occupancy. Atlanta: ASHRAE. https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy
Bastami Joe, M., & Afzali, S. F. (2026). Evaluating human comfort conditions based on bioclimatic indicators(Case study: Si Sakht tourist city). Journal of Sustainable Urban & Regional Development Studies (JSURDS), 6(4), 114-126. https://www.srds.ir/article_219757.html?lang=en [In Persian]
Behnam, M. (2024). Reconsideration of Cultural and Identity Components in Local Architecture Case Study: Kish Island. Geography and Human Relationships, 7(1), 333-357. doi: 22034.10/gahr.467125.2024.2201 [In Persian]
Bera, M., & Nag, P. K. (2022). Bioclimatic Design of Low-Cost Rural Dwellings. Frontiers in Built Environment, 8, 773108. https://doi.org/3389.10/fbuil.773108.2022
Chorak, A., Mahdaoui, M., Ben Taher, M. A., Kaitouni, S. I., Afass, A., Ouardouz, M., & Ahachad, M. (2025). Integrating active and passive solar strategies in modular residential positive energy building in semi-arid climates: Insights from the TDART project. Energy Rep., 13, 1239–1265. doi: 1016.10/j.egyr.12.2024.073
Crawford, R. (2011). Life Cycle Assessment in the Built Environment. . http://dx.doi.org/4324.10/9780203868171
de Dear, R., & Brager, G. (2002). Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy Build., 34, 549–561. http://dx.doi.org/1016.10/S0378-7788(02)00005-1
DeKay, M., & Brown, G. (2001). SUN, WIND & LIGHT: Architectural Design Strategies, 2nd edition. ResearchGate. Retrieved from https://www.researchgate.net/publication/301626264_SUN_WIND_LIGHT_Architectural_Design_Strategies_2nd_edition
Delfanian, H., Khakzand, M., & Kamyabi, S. (2019). Identifying the Relationship between Vernacular Architecture & Climate through Studying Thermal Comfort Indicators in Nowshahr City. Armanshahr Architecture & Urban Development, 11(25), 69-79. https://www.armanshahrjournal.com/article_85055.html?lang=en [In Persian]
Edwards, B. (2010). Rough Guide to Sustainability. London: RIBA Publishing. https://www.ribabooks.com/rough-guide-to-sustainability-a-design-primer_9781859465073
Elaouzy, Y., & El Fadar, A. (2023). Sustainability of building-integrated bioclimatic design strategies depending on energy affordability. Renewable and Sustainable Energy Reviews, 179, 113295. https://doi.org/1016.10/j.rser.113295.2023
Evangelisti, L., Guattari, C., Gori, C., & Bisegna, F. (2015). Energy savings and thermal comfort improvements in buildings with high thermal inertia. Energy and Buildings, 96, 179-188.
Fanger, P. O. (1970). Thermal comfort: Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press. https://www.cabidigitallibrary.org/doi/full/5555.10/19722700268
Getter, K., & Rowe, D. (2006). The Role of Extensive Green Roofs in Sustainable Development. HortScience: a publication of the American Society for Horticultural Science, 41, 1276. http://dx.doi.org/21273.10/HORTSCI.5.41.1276
Givoni, B. (1998). Climate considerations in building and urban design. New York: Wiley. https://www.wiley.com/en-us/Climate+Considerations+in+Building+and+Urban+Design-p-9780471291770
Kamyabi, S., & Mirzaei, N.(2016). Ranking the Towns of Razavi Khorasan Province in Terms of Development Indicators, Using Factor Analysis Method. Journal of Socio-Cultural Studies of Khorasan, 10(2), 119-141. https://www.farhangekhorasan.ir/article_13894.html?lang=en [In Persian]
Liddament, M. W. (1996). A guide to natural ventilation in buildings. Bracknell: Air Infiltration and Ventilation Centre. https://www.scirp.org/reference/referencespapers?referenceid=2165909
Mazria, E. (1979). The passive solar energy book: A complete guide to natural heating and cooling. Emmaus, PA: Rodale Press. https://www.amazon.de/-/en/Passive-Solar-Energy-Book-Greenhouse/dp/0878572376
Nicol, J., & Humphreys, M. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34(6), 563-572. https://doi.org/1016.10/S0378-7788(02)00006-3
Olgyay, V. (2015). Design with climate: Bioclimatic approach to architectural regionalism: New and expanded edition. ResearchGate, 1–190. Retrieved from https://www.researchgate.net/publication/285610217_Design_with_climate_Bioclimatic_approach_to_architectural_regionalism_New_and_expanded_edition
Oliver, P. (2006). Built to meet needs: Cultural issues in vernacular architecture. Oxford: Architectural Press. https://doi.org/4324.10/9780080476308
Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy Build., 40(3), 394–398. doi: 1016.10/j.enbuild.03.2007.007
Rosenfeld, A. H., Akbari, H., Romm, J. J., & Pomerantz, M. (1998). Cool communities: Strategies for heat island mitigation and smog reduction. Energy and Buildings, 28(1), 51-62. https://doi.org/1016.10/S0378-7788(97)00063-7
Szokolay, S. V. (2008). Introduction to Architectural Science: The Basis of Sustainable Design. Routledge. Retrieved from https://books.google.de/books/about/Introduction_to_Architectural_Science.html?id=jfISC1m3FqUC&hl=en&redir_esc=y
Vale, B., & Vale, R. (2013). Time to heal: American environmental architecture into the twenty-first century. London: Thames & Hudson.
Watson, D., & Labs, K. (1983). Climatic Design: Energy-Efficient Building Principles and Practices. New York: McGraw-Hill. https://www.scirp.org/reference/referencespapers?referenceid=1868667
Watson, D., & Labs, K. (1993). Climatic design: Energy-efficient building principles and practices. New York: McGraw-Hill. https://www.amazon.de/-/en/Climatic-Design-Energy-Efficient-Principles-Practices/dp/007068488X
Xhexhi, K. & Aliaj, B. (2024). Modular Construction and Bioclimatic Strategies: A Sustainable Approach to Building Design. 4Th International Conference on Scientific and Academic Research Icsar, 4(1), 282-292. https://philpapers.org/versions/XHEMCA
Zolfaghari Tehrani, M., Mahdavinejad, M., Ansari, M., & Mansouri, B. (2024). The influential factors in Persian architecture as a biocompatible and eco-friendly building methodology. Naqshejahan, 14(2), 1-20. https://bsnt.modares.ac.ir/article-2-72457-fa.html [In Persian]
Zr, D. L., & Mochtar, S. (2012). Application of Bioclimatic Parameter as Sustainability Approach on Multi-story Building Design in Tropical Area. Procedia Environmental Sciences, 17, 822-830. https://doi.org/1016.10/j.proenv.02.2013.100