Synthesis of Nickel-Nickel oxide foam by electrochemical method and its application in supercapacitor
Subject Areas :Majid Mirzaee 1 * , Changiz Dehghanian 2
1 - University of Tehran, Faculty of Engineering, School of Metallurgy and Materials Engineering
2 - University of Tehran, Faculty of Engineering, School of Metallurgy and Materials Engineering, Tehran, Iran
Keywords: Electrochemical method, Supercapacitor, Ni-NiO foam, Porous films, Hydrogen bubble template,
Abstract :
This paper investigates the applicability of nickel-nickel oxide metallic foams as a current collector for supercapacitor. A simple galvanic displacement reaction was employed to fabricate dendritic Cu dealloyed nanoporous Ni-NiO foam. A comprehensive characterization of foams are presented and includes the analysis of their structural, chemical, and electrochemical properties. The process is studied under well-defined experimental conditions using XRD, SEM, electrochemical impedance spectroscopy (EIS) and galvanostatic charge and discharge (GCD). XRD results confirm the presence of nickel and nickel oxide phases. Also, in the SEM test, porosities were observed in the range of micro and dendrites in the nanoscale. The outcome of these experiments demonstrates that the Ni-NiO foam has a higher specific capacitance. The best specific capacitance for Ni-NiO foam was calculated 924 F/g at 1A/g. Ni-NiO foam maintains 81.8% of its specific capacitance at a current density of 20 A/g and after 3000 cycles. The created foam electrode can be used as a current collector for the deposition of subsequent layers and is a candidate for use in supercapacitors.
[1] ش. خامنه اصل و م. نامدار حبشی، "سنتز گرافن به روش لیزر به منظور ساخت ابرخازنهای الکتروشیمیایی، فرآیندهای نوین در مهندسی مواد"، دوره 12، شماره 1 - شماره پیاپی 44، صفحه 107-119، بهار 1397.
[2] B. C. Tappan, S. A. Steiner & E. P. Luther, “Nanoporous metal foamsˮ, Angewandte Chemie International Edition, Vol. 49, No. 27, pp. 4544-4565, 2010.
[3] H. C. Shin, J. Dong & M. Liu, “Nanoporous structures prepared by an electrochemical deposition processˮ, Advanced Materials, Vol. 15, No. 19, pp. 1610-1614, 2003.
[4] H. C. Shin & M. Liu, “Copper foam structures with highly porous nanostructured wallsˮ, Chemistry of materials, Vol. 16, No. 25, pp. 5460-5464, 2004.
[5] س. فضلی و م. ا. بحرالعلوم، "بررسی عوامل موثر بر مورفولوژی و ساختار نانویی پوششهای آلیاژی نیکل-آهن تهیه شده به روش آبکاری الکتریکی"، فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 1 - شماره پیاپی 36، صفحه 45-37، بهار .
[6] G. Lange, S. Eugénio, R. Duarte, T. Silva, M. Carmezim & M. d. F. Montemor, “Characterisation and electrochemical behaviour of electrodeposited Cu–Fe foams applied as pseudocapacitor electrodesˮ, Journal of Electroanalytical Chemistry, Vol. 737, pp. 85-92, 2015.
[7] I. Sunagawa, “Morphology of crystals: part A: fundamentals part B: fine particles, minerals and snow part C: the geometry of crystal growth by jaap van suchtelenˮ, Springer Science & Business Media, 1995.
[8] K. Fukami & et al., “General mechanism for the synchronization of electrochemical oscillations and self-organized dendrite electrodeposition of metals with ordered 2D and 3D microstructuresˮ, The Journal of Physical Chemistry C, Vol. 111, No. 3, pp. 1150-1160, 2007.
[9] K. Zhuo, M. G. Jeong & C. H. Chung, “Dendritic nanoporous nickel oxides for a supercapacitor prepared by a galvanic displacement reaction with chlorine ions as an accelerator,ˮ RSC Advances, Vol. 3, No. 31, pp. 12611-12615, 2013.
[10] W. Shao, G. Pattanaik & G. Zangari, “Influence of chloride anions on the mechanism of copper electrodeposition from acidic sulfate electrolytesˮ, Journal of The Electrochemical Society, Vol. 1, No. 54, pp. D201-D207, 2007.
[11] B. Wei & et al., “Room‐temperature ferromagnetism in doped face‐centered cubic Fe nanoparticlesˮ, small, Vol. 2, No. 6, pp. 804-809, 2006.
[12] C. W. Kim & et al., “Surface investigation and magnetic behavior of Co nanoparticles prepared via a surfactant-mediated polyol processˮ, The Journal of Physical Chemistry C, Vol. 113, No. 13, pp. 5081-5086, 2009.
[13] H. Q. Wang & et al., “Porous nano-MnO2: large scale synthesis via a facile quick-redox procedure and application in a supercapacitorˮ, New Journal of Chemistry, Vol. 35, No. 2, pp. 469-475, 2011.
[14] M. Zhi, A. Manivannan, F. Meng & N. Wu, “Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitorsˮ, Journal of Power Sources, Vol. 208, pp. 345-353, 2012.
[15] S. Biswas & L. T. Drzal, “Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodesˮ, Chemistry of Materials, Vol. 22, No. 20, pp. 5667-5671, 2010.
[16] J. Ji & et al., “Nanoporous Ni (OH) 2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitorˮ, ACS nano, Vol. 7, No. 7, pp. 6237-6243, 2013.
[17] W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami & Y. Takasu, “Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storageˮ, Angewandte Chemie International Edition, Vol. 42, No. 34, pp. 4092-4096, 2003.
[18] C. C. Hu, K. H. Chang & T. Y. Hsu, “The synergistic influences of OH− concentration and electrolyte conductivity on the redox behavior of Ni (OH) 2/NiOOHˮ, Journal of The Electrochemical Society, Vol. 155, No. 8, pp. F196-F200, 2008.
_||_