Synthesis and characterization of Ag and Cu nanorods and thermal conductivity investigation of nanofluids containing synthesized nanorods
Subject Areas :صدیقه عباسی 1 , فرید نوری وطن 2
1 - عضو هیات علمی مجتمع آموزش عالی فنی و مهندسی اسفراین
2 - دانشگاه آزاد سیرجان
Keywords: Thermal conductivity, Ag nanorods, Cu nanorods,
Abstract :
In this paper, we synthesized the Ag and Cu nanorods and investigated the thermal conductivity behavior of nanofluids containing of them. The samples have been characterized by Xray diffraction (XRD) and transmission electron microscopy (TEM). XRD results revealed that the crystalline structure of Ag and Cu nanorods with cubic structure were formed. TEM image showed that the synthesis of Ag and Cu leads to the rod structures. The experimental results of termal conductivity showed that by increasing the temperature in the range of from 20 to 60°C and weight fraction from 0.25 to 0 %wt, thermal conductivity of all nanofluids increased. Meanwhile, it can be observed that the minimum and maximum thermal conductivity of Ag nanofluid were 0.56 W/m.K and 2.93 W/m.K respectively, and in the Cu nanofluid were 0.33 W/m.K and 2.74 W/m.K. The results of thermal conductivity behavior of nanofluids revealed that the thermal conductivity of all nanofluids, increases with temperature and weight fraction. However the influence of temperature is more significant than that of weight fraction.
[1] W. Duangthongsuk & S. Wongwises, “An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime”, International Journal of Heat and Mass Transfer, Vol. 53, pp. 334–344, 2010.
[2] ص. عباسی, س. م. زبرجد, س. ح. ن. باغبان و ع. یوسفی, "تاثیر میزان نانوذرات بر روی پایداری و هدایت حرارتی نانوسیال حاوی نانولوله های کربنی آرایش یافته با نانوذرات TiO2", فرایندهای نوین در مهندسی مواد، دوره هشتم، صفحه 1-8، 1393.
[3] S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, A. Youssefi & M. S. Ekrami-Kakhki, “Experimental investigation of the rheological behavior and viscosity of decorated multi-walled carbon nanotubes with TiO2 nanoparticles/water nanofluids”, Journal of Thermal Analysis and Calorimetry, 2015.
[4] S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, A. Youssefi & M. S. Ekrami-Kakhki, “Thermal Conductivity of Water Based Nanofluids Containing Decorated Multi Walled Carbon Nanotubes with Different Amount of TiO2 Nanoparticles”, Iranian Journal of Chemical Engineering,Vol. 12, pp. 30-41, 2015.
[5] A. K. Singh, “Thermal Conductivity of Nanofluids”, Defence Science,Vol. 58, pp. 600-607, 2008.
[6] S. Abbasi, S. M. Zebarjad, S. H. N. Baghban & A. Youssefi, “Statistical analysis of thermal conductivity of nanofluid containing decorated multi-walled carbon nanotubes with TiO2 nanoparticles”, Bulletin of Materials Science,Vol. 37, pp. 1439–1445, 2014.
[7] Y. Xuan & W. Roetzel, “Conceptions for heat transfer correlation of nanofluids”, Heat and Mass Transfer, vol. 43, pp. 3701-3707, 2000.
[8] M. Tahari, M. shamanian & M. salehi, “The effect of heat treatment and thermal spray processes on the grain growth of nanostructured composite CoNiCrAlY/YSZ powders”, Journal of Alloys and Compounds,Vol. 646, pp. 372–379, 2015
[9] M. Abareshi, E. Goharshadi, S. M. Zebarjad, H. K. Fadafan & A. Youssefi, “Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids”, Journal of Magnetism and Magnetic Materials,Vol. 322, pp. 3895–3901, 2010.
[10] S. M. S. Murshed, K. C. Leong & C. Yang, “Enhanced thermal conductivity of TiO2–water based nanofluids”, Thermal Sciences,Vol. 44, pp. 367–373, 2005.
[11] H. Masuda, A. Ebata, K. Teramae & N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles)”, Netsu Bussei,Vol. 4, pp. 227–233, 1993.
[12] L. P. Zhou and B. X. Wang, Annu. Proc. Chin. Eng. Thermophys, pp. 889–892, 2002.
[13] E. K. Goharshadi, H. Ahmadzadeh, S. Samiee & M. Hadadian, “Nanofluids for Heat Transfer Enhancement-A Review”, Physical chemistry research,Vol. 1, pp. 1-33, 2013.
[14] M. Liu, M. C. Lin & C. Wang, “Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system”, Nanoscale Research Letters,Vol. 6, pp. 297-310, 2011.
[15] M. T. Jamal-Abadi & A. H. Zamzamian, “Thermal Conductivity of Cu and Al-Water Nanofluids”, International Journal of Engineering,Vol. 26, pp. 821-828, 2013.
[16] X. Fang, Q. Ding, L. W. Fan, Z. T. Yu, X. Xu, G. H. Cheng, Y. C. Hu & K. F. Cen, “Thermal Conductivity Enhancement of Ethylene Glycol-Based Suspensions in the Presence of Silver Nanoparticles of Various Shapes”, Journal of Heat Transfer,Vol. 136, pp. 034501-034507, 2014.
[17] L. Godson, B. Raja, D. M. Lal & S. Wongwises, “Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid”, Experimental Heat Transfer,Vol. 23, pp. 317–332, 2010.
[18] M. Saterlie, H. Sahin, B. Kavlicoglu, Y. Liu & O. Graeve, “Particle size effects in the thermal conductivity enhancement of copper-based nanofluids”, Nanoscale Research Letters,Vol. 6, pp. 217-223, 2011.
[19] م. ابارشی و س. م. شاهرودی، "بررسی اثر حضور نانو ذرات نقره بر بلورینگی پلی اتیلن"، فرایند های نوین در مهندسی مواد، دوره دهم، صفحه 105-113، 1395.
_||_