Identifying future climatic change patterns at basin level in Baja California, México
Subject Areas : EnvironmentTeodoro Teodoro Carlón Allende 1 , Erna López Granados 2 , Manuel Mendoza 3 *
1 - CONACYT-Instituto de Geofísica, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
2 - Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Morelia Michoacán, México
3 - Centro Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
Keywords: Spatial analysis, Climate models, Future climate patterns, (fifth-generation atmospheric general circulation model) MPI ECHAM5, (Hadley Centre Global Environment Model version 1) HADGEM1,
Abstract :
Background and objective: The global average surface temperature increased by about 0.6°C, and global sea level increased by 15 to 20 cm during the last century. As the temperature rise, crops and forests will experience failure. In Baja California, Mexico, there is no systematic evaluation of the spatial variability of future temperature and precipitation. The aim of this research was to identify how the precipitation and temperature will change in the basins according to the Intergovernmental Panel on Climate Change climate projections.Materials and methods: We used the MPI ECHAM5 model scenarios A2 (pessimistic) and B2 (optimistic) of total annual precipitation (TAP) and mean annual temperature (MAT) for 2030 and 2050; we also used the HADGEM1 model, (scenarios A2 and B2) of TAP and MAT (2030-2050). All procedures were carried out in a geographic information system.Results and conclusion: We evaluate for the first-time which basins at the peninsula will be more affected by changes in TAP and MAP. The relative increase of MAT per basin depicted a trend north to south. The highest values reaching 6.0° to 6.5°, the minimum values are around 2.0°. The reduction of TAP will be 21 mm from the baseline to 2030. The model also depicted an increase in TAP in the south of the peninsula (12-40 mm). The northern basins will suffer by reduction of water availability, especially for agriculture activities. The southern basins could be affected more by flooding and landslides.
Bai, Y., Zhang, Z., & Zhao, W. (2019). Assessing the impact of climate change on flood events using HEC-HMS and CMIP5. Water, Air, & Soil Pollution, 230(6), 1-13. Doi: 10.1007/s11270-019-4159-0
https://doi.org/10.1007/s11270-019-4159-0
Bates, B.C., Z.W. Kundzewicz, S. Wu, and J.P. Palutikof (eds.) (2008). Climate Change and Water. Intergovernmental Panel on Climate Change (IPCC) Technical Paper VI, IPCC Secretariat, Geneva, Switzerland, 210 pp.
Borgatti, L., and Soldati, M. (2010). Landslides and climatic change. In: Geomorphological Hazards and Disaster Prevention, eds. Irasema Alcántara-Ayala and Andrew S. Goudie. Published by Cambridge University Press. Cambridge University Press.
Carbone, G.J. (2014). Managing climate change scenarios for societal impact studies. Physical Geography, 35(1), 22-49.
https://doi.org/10.1080/02723646.2013.869714
Carlón-Allende, T., Mendoza, M. E., Lopez Granados, E. M., and Morales Manilla, L. M. (2009). Hydrogeographical regionalisation: an approach for evaluating the effects of land cover change in watersheds. A case study in the Cuitzeo lake watershed, central Mexico. Water Resources Management, 23, 2587-2603. doi 10.1007/s11269-008-9398-6
https://doi.org/10.1007/s11269-008-9398-6
CECC, (2008). Ecological impacts of climate change. National Academies Press, Washington.
Coe, J.A., Godt, J.W. (2012). Review of approaches for assessing the impact of climate change on landslide hazards. In: In: Eberhardt, E., Froese, C., Turner, A., Leroueil, S. (Eds.), Landslides and Engineered Slopes, Protecting Society Through Improved Understanding, vol. 1. Taylor & Francis Group, London, pp. 371-377.
CAN, (1998). Comisión Nacional del Agua 2001. Cuencas Hidrológicas (CNA) [WWW Document]. URL file:///D:/Baja%20California/Cuencas/cue250kgw_c/cue250kcw.html (accessed 7.6.20).
Conde, C., Estrada F., Martínez B., Sánchez O. and Gay C. (2011). Regional climate change scenarios for México. Atmosfera, 24(1), 125 - 140.
Coombe, B. G. (1987). Influence of temperature on composition and quality of grapes. Acta Horticulturae, 206, 23-35.
https://doi.org/10.17660/ActaHortic.1987.206.1
Crozier, M., (2010). Deciphering the effect of climate change on landslide activity: a review. Geomorphology, 124(3-4), 260-267. https://doi.org/10.1016/j.geomorph.2010.04.009
Davies, T.M., Korup, O and Clague, J.J. (2021). Geomorphology and Natural Hazards. Understanding Landscape Change for Disaster Mitigation. AGU-Wiley, USA, 554 pp.
Donat, M. G. et al., (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 2098-2118,
https://doi.org/10.1002/jgrd.50150
ESRI, (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
Easterling, D.R., Gerald, A.M., Camille, P., Changnon S. A., Karl, T.R. and Mears, L. (2000) Climate Extremes: Observations, Modeling, and Impacts. Science, 289, 2068-2074. http://dx.doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1126/science.289.5487.2068
Fernández-Eguiarte, A., Romero Centeno, R. and Zavala Hidalgo, J. (2014). Metodologías empleadas en el atlas climático digital de México para la generación de mapas de alta resolución. Geoacta, 39, 165-173.
García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de México.
Giang, P.Q., Toshiki, K., Sakata, M., Kunikane, S. and Vinh, T.Q. (2014). Modelling Climate Change Impacts on the Seasonality of Water Resources in the Upper Ca River Watershed in Southeast Asia. The Scientific World Journal, https://doi.org/10.1155/2014/279135
Gillanders, B.M., Elsdon, T.S., Halliday, I.A., Jenkins, G.P., Robins and J.B., Va-lesini, F.J. (2011). Potential effects of Climate Change on Australian estuaries and fish utilising estuaries: a review. Marine and Freshwater Research, 62, 1115-1131. https://doi.org/10.1071/MF11047
Gladstones, J. (2002). Viticulture and environment. Adelaide, winetitles, 310 p.
Gómez-Díaz, J. D., A. I. Monterroso Rivas, J. A. Tinoco Rueda, M. L. Toledo Medrano (2011). Assessing current and potential patterns of 16 forest species driven by climate change scenarios in México. Atmósfera, 24(1), 31-52.
Grafarend, E.W., You, R.J. and Syffus, R. (2014). Map Projections. Springer Berlin Heidelberg, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-36494-5
Grismer, L.L. (2000). Evolutionary biogeography on Mexico's Baja California peninsula: A synthesis of molecules and historical geology. Proceedings of the National Academy of Sciences, 97(26), 14017-8. DOI: 10.1073/pnas.260509697
https://doi.org/10.1073/pnas.260509697
Hauser, R., S. Archer, P. Backlund, J. Hatfield, A. Janetos, D. Lettenmaier, M. G. Ryan, D. Schimel and M. Walsh, (2009). The Effects of Climate Change on U.S. Ecosystems. Department of Agriculture, USDA, USA.
He, S., Wang, D., Li, Y., Zhao, P., Lan, H., Chen, W., ... & Chen, X. (2021). Social-ecological system resilience of debris flow alluvial fans in the Awang basin, China. Journal of Environmental Management, 286, 112230.
https://doi.org/10.1016/j.jenvman.2021.112230
He, S., Wang, D., Zhao, P., Li, Y., Lan, H., Chen, W., & Jamali, A. A. (2020). A review and prospects of debris flow waste-shoal land use in typical debris flow areas, China. Land Use Policy, 99, 105064.
https://doi.org/10.1016/j.landusepol.2020.105064
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A., (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
https://doi.org/10.1002/joc.1276
INEGI, (2006). Conjunto de Datos de cobertura y uso del Suelo Vectoriales Escala 1:250 000 Serie II, Continuo Nacional. Instituto Nacional de Estadística y Geografía.
INEGI, (2014). Conjunto de Datos Edafológicos Vectoriales Escala 1:250 000 Serie I, Continuo Nacional. Instituto Nacional de Estadística y Geografía.
IPCC, (2007). Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Jones, G.V., White, M.A., Cooper, O.R. and Storchmann, K. (2005). Climate Change and Global Wine Quality. Climatic Change (73), 319-343.
https://doi.org/10.1007/s10584-005-4704-2
Kundzewicz, Z.W., L.J. Mata, N.W. Arnell, P. Döll, P. Kabat, B. Jiménez, K.A. Miller, T. Oki, Z. Sen and I.A. Shiklomanov (2007). Freshwater resources and their management. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 173-210.
Leija, E.G., Valenzuela-Ceballos, S.I, Valencia-Castro, M., Jiménez-González, G., Castañeda-Gaytán, G., Reyes-Hernández H. and Mendoza. M.E. (2020). Análisis de cambio en la cobertura vegetal y uso del suelo en la región centro-norte de México. El caso de la cuenca baja del río Nazas. Revista Ecosistemas, 29(1), 1826. DOI:
https://doi.org/10.7818/ECOS.1826
Longley, P. (2005). Geographic Information Systems and Science. John Wiley and Sons.
López-Granados E.M., Mendoza M.E. and González, D.I. (2013). Linking geomorphologic knowledge, RS and GIS techniques for analysing land cover and land use change: a multitemporal study in the Cointzio watershed, Mexico. Revista Ambiente & Agua - An Interdisciplinary Journal of Applied Science, 8(1), 18-37.
https://doi.org/10.4136/1980-993X
López-Granados, E., Bocco, G., Mendoza, M. E. and Duhau, E. (2001). Predicting land cover and land use change in the urban fringe. A case in Morelia City, Mexico. Landscape and Urban Planning, 55, 271-286.
https://doi.org/10.1016/S0169-2046(01)00160-8
Magaña, V., Conde, C., Sánchez, O., and Gay, C. (1997). Assessment of current and future regional climate scenarios for Mexico. Climate Research, 7, 107-114.
https://doi.org/10.3354/cr009107
Martin, G. M., Ringer, M. A., Pope, V. D., Jones A., Dearden C., and Hinton T. J. (2006). The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model, HadGEM1. Part I: Model description and global climatology. Journal of Climate, 19 (7), 1274-1301.
https://doi.org/10.1175/JCLI3636.1
Martínez, L.A., Mas, J. F., Torrescano Valle, N., Urquijo Torres, P. S. and Folan, W.J. (2015). Modeling Historical Land Cover and Land Use: A review from Contemporary Modeling. ISPRS International Journal of Geo-Information, 4, 1791-1812.
https://doi.org/10.3390/ijgi4041791
Mendoza, M.E., López Granados, E.M., Geneletti, D., Pérez-Salicrup, D.R. and Salinas, V. (2011). Analysing land cover and land use change processes at watershed level: A multitemporal study in the Lake Cuitzeo Watershed, Mexico (1975-2003). Applied Geography, 31, 237-250.
https://doi.org/10.1016/j.apgeog.2010.05.010
Miora de Orduña, R. (2010). Climate change associated effects on grape and wine quality and production, 43 (7), 1844-1855.
https://doi.org/10.1016/j.foodres.2010.05.001
Molina-Navarro, E., Hallack-Alegria, M., Martínez-Pérez, S., Ramírez-Hernández, J., Mungaray-Moctezuma, A., Sastre-Merlín, A. (2016). Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe River basin, México. Agricultural Water Management, 175, 29-42. https://dx.doi.org/10.1016/j.agwat.2015.10.029.
https://doi.org/10.1016/j.agwat.2015.10.029
Monterroso, R. A., Fernández E., A., Trejo V., R. I., Conde A., A. C. Escandón C., J., Villers R., L. and R. Gay G., R. (2014). Vulnerabilidad y adaptación a los efectos del cambio climático en México [WWW Document]. URL http://atlasclimatico.unam.mx/VyA/#34 (accessed 7.8.20).
Nan, Y., M. Bao-Hui and L. Chun-Kung. (2011). Impact analysis of climate change on water resources. Procedia Engineering, 24, 643-648.
https://doi.org/10.1016/j.proeng.2011.11.2710
National Research Council (2008). Ecological Impacts of Climate Change. Washington, DC: The National Academies Press. https://doi.org/10.17226/12491
Overpeck, J., Rind, D. and Goldberg, R. (1990). Climate-induced changes in forest disturbance and vegetation. Nature 343, 51-53.
https://doi.org/10.1038/343051a0
Parry, M., Canziani, O., Palutikof, J.P., et al. (2007). Resumen técnico. National Research Council. Ecological impacts of climate change. National Academies Press: Washington, USA, 2008.
PEACC, (2012). Programa Estatal de Acción ante el Cambio Climático de Baja California, SEMASRNAT-GOBBC, INE 22pp.
Peinado-Lorca, M. and Delgadillo Rodrígez, J. (1990). Introducción al conocimiento topográfico de baja California (México). Stvdia Botánica, 9, 25-39.
Roeckner, E., Bäuml, G., Bonaventura, Brokopf, R., Esch M., Giorgetta, M., Hagemann S., Kirchner I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, Schulzweida, U. and Tompkins, A. (2003). The atmospheric general circulation model ECHAM 5. PART I: Model description. Max Planck Institute for Meteorology, Hamburg, Germany.
Rzedowski, J. (1998). Vegetación de México. Ed. Limusa, México.
Sánchez-Torres, Esqueda, J.D., Opiña Noreña, J.E., Gay-García, C., Conde, C. (2011). Vulnerability of water resources to climate change scenarios. Impacts on the irrigation districts in the Guayalejo-Tamesí river basin, Tamaulipas, México. Atmósfera, 24(1), 141-155.
Sangelantoni, L., Gioia E. and Marincioni, F. (2018). Impact of climate change on landslides frequency: the Esino river basin case study (Central Italy). Natural Hazards, 93, 849-884.
https://doi.org/10.1007/s11069-018-3328-6
Shekhar, S. and Xiong H. (2007). Encyclopedia of GIS. Springer.
https://doi.org/10.1007/978-0-387-35973-1
Schultz,H.R. (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects, Australian Journal of Grape and Wine Research, (6), 2-12.
https://doi.org/10.1111/j.1755-0238.2000.tb00156.x
Smit, B. and Pilifosova, O., (2003). From adaptation to adaptive capacity and vulnerability reduction. In: Smith, J.B., Klein, R.J.T., Huq, S. (Eds.), Climate Change, Adaptive Capacity and Development. Imperial College Press, London.
https://doi.org/10.1142/9781860945816_0002
Snyder, J.P. (1987). Map Projections: A Working Manual (USGS Numbered Series No. 10395), Professional Paper. Geological Survey.
https://doi.org/10.3133/pp1395
Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University
Svejcar, T. Angell, R. and James, J. (2016). Spatial and temporal variability in minimum temperature trends in the western U.S. sagebrush steppe. Journal of Arid Environments, 133, 125-133.
https://doi.org/10.1016/j.jaridenv.2016.06.003
Tabot, P.T. and Adams, J.B. (2013). Ecophysiology of salt marsh plants and predicted responses to climate change in South Africa. Ocean Coastal Management, 80, 89-99.
https://doi.org/10.1016/j.ocecoaman.2013.04.003
Valenzuela Solano C., Ruiz Corral, J. A., Ramírez Ojeda, G. and Hernández Martínez, R. (2014). Efectos del cambio climático sobre el potencial vitícola de Baja California, México. Revista Mexicana de Ciencias Agrícolas, 10, 2047-2059.
https://doi.org/10.29312/remexca.v0i10.1043
Webb, L., Whetton, P., Bhend, J. Darbyshire, R., Briggs, G.R. and Barlow, E. W. R. (2012). Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nature Climate Change 2, 259-264.
https://doi.org/10.1038/nclimate1417