• Home
  • Manuel Mendoza
  • OpenAccess
    • List of Articles Manuel Mendoza

      • Open Access Article

        1 - Identifying future climatic change patterns at basin level in Baja California, México
        Teodoro Teodoro Carlón Allende Erna López Granados Manuel Mendoza
        Background and objective: The global average surface temperature increased by about 0.6°C, and global sea level increased by 15 to 20 cm during the last century. As the temperature rise, crops and forests will experience failure. In Baja California, Mexico, there is More
        Background and objective: The global average surface temperature increased by about 0.6°C, and global sea level increased by 15 to 20 cm during the last century. As the temperature rise, crops and forests will experience failure. In Baja California, Mexico, there is no systematic evaluation of the spatial variability of future temperature and precipitation. The aim of this research was to identify how the precipitation and temperature will change in the basins according to the Intergovernmental Panel on Climate Change climate projections.Materials and methods: We used the MPI ECHAM5 model scenarios A2 (pessimistic) and B2 (optimistic) of total annual precipitation (TAP) and mean annual temperature (MAT) for 2030 and 2050; we also used the HADGEM1 model, (scenarios A2 and B2) of TAP and MAT (2030-2050). All procedures were carried out in a geographic information system.Results and conclusion: We evaluate for the first-time which basins at the peninsula will be more affected by changes in TAP and MAP. The relative increase of MAT per basin depicted a trend north to south. The highest values reaching 6.0° to 6.5°, the minimum values are around 2.0°. The reduction of TAP will be 21 mm from the baseline to 2030. The model also depicted an increase in TAP in the south of the peninsula (12-40 mm). The northern basins will suffer by reduction of water availability, especially for agriculture activities. The southern basins could be affected more by flooding and landslides. Manuscript profile
      • Open Access Article

        2 - GIS-based support vector machine model in shallow landslide hazards prediction: A case study on Ilam dam watershed, Iran
        Yaghoub Niazi Manuel E Mendoza Ali Talebi Hasti Bidaki
        Background and objective: The SVM algorithm is an applied method that has been considered in recent years to study landslides. The main purpose of this study is to evaluate the mapping power of the GIS-based SVM model with kernel functions analysis for spatial predictio More
        Background and objective: The SVM algorithm is an applied method that has been considered in recent years to study landslides. The main purpose of this study is to evaluate the mapping power of the GIS-based SVM model with kernel functions analysis for spatial prediction of landslides at the Ilam dam watershed. Materials and methods: According to review sources, 14 underlying factors including elevation, slope, aspect, plan curvature, profile curvature, LS factor, TWI, SPI, Lithologic units, land cover, NDVI, road distance, distance to the drainage channel, distance to fault were selected as factors affecting the occurrence of landslides in the study area and the mentioned layers were prepared in the GIS. In the present study, the non-linear two-class SVM method was used, the two-class SVM requires both datasets representing the occurrence of landslides and non-occurrence of landslides. The landslide inventory was randomly divided into a training dataset of 75% for building the models and the remaining 25% for the validation of the models. Results and conclusion: The validation results showed that the area of the prediction-rate curve under the curve (AUC) for landslide susceptibility maps produced by the SVM linear function, SVM polynomial function, SVM radial basic function, and SVM sigmoid function are 0.946, 0.931, 0.912, and 0.871 respectively. To assess the influences of factors on the landslide susceptibility map were used the Cohen’s kappa index of the model. The result shows that the most effective factors are the distance to roads, distance to drainages, and plan curvature in this area. Manuscript profile