Epifluorescence Light Microscopy as a New Method for Evaluation of Fermentation Activity of Bakery’s Yeast
Subject Areas : MicrobiologyA. Azizi 1 , A. Homayouni Rad 2 , H. Homayouni Rad 3 , S. Hoshmandi 4 , Z. Kasaei 5
1 - دانشیارمؤسسه تحقیقاتی فنی و مهندسی صنایع غذایی، وزارت جهاد کشاورزی، کرج، ایران
2 - استاد گروه علوم و صنایع غذایی، دانشکده تغذیه و علوم غذایی، دانشگاه علوم پزشکی تبریز، تبریز، ایران
3 - دانشجوی کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
4 - عضو هیأت علمی دانشگاه علوم پزشکی اردبیل، اردبیل، ایران
5 - عضو هیأت علمی گروه علوم و صنایع غذایی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، تبریز، ایران
Keywords: Bakery Yeast, Epifluorescence Light Microsco, Gassing Power, Viability,
Abstract :
Introduction: Technological performance of Bakery’s yeast is closely related to its viability. In order to predict the performance of baker's yeast, observations concerned with accurate and fast detection of viable and nonviable yeast in the fermentation environment is essential. Materials and Methods: In this study, three samples of instant dry yeast were investigated by epifluorescence light microscopy (EFLM) using 0.02 % FDA and 0.1% Evans blue. Gasograph apparatus was employed to measure CO2 produced by the Saccharomyces cerevisiae during fermentation. Microbial tests were carried out in order to count the number of yeasts colonies formed. Bread volume and height were assessed after baking process. Results: Baker’s yeast (A) had the highest number of green cells (177.8±7.36) and baker’s yeast (C) had the lowest number of green cells (102.2±8.97). The number of yeast colonies formed in baker’s yeast (A) was the highest (15×1010 cfu/mg) while the bakery’s yeast (C) was the least (12×1010 cfu/mg). Gasograph test showed that baker’s yeast (A) produced the highest amount of CO2 (163.3± 1.9 ml CO2/3h) and bakery’s yeast (C) produced the lowest amount during fermentation process (139.67±1.6 ml CO2/3h). Bread (A) produced the highest volume (132.22±1.0 cm3) and height (4.72±0.35 cm) while bread (C) had the lowest volume (108.33±6.21 cm3) and height (3.81± 0.3 cm). Conclusion: The tests concerned indicated that high survivability and bioactivity of bakery’s yeast leads to more production of CO2 and higher volume and height of bread. The results showed a direct correlation between the percentage of live yeasts and ability of CO2 production. Utilization of EFLM can help to predict the bakery yeast bioactivity without the need for baking tests.
پایان، ر. (1380). مقدمه ای بر تکنولوژی فرآورده های غلات. انتشارات نورپرداران، صفحه 99
کسائی، ز. (1390). مقایسه روشهای ارزیابی زنده مانی، قدرت تولید گاز و فعالیت تخمیری مخمر نانوائی (ساکارومایسس سرویسیا). پایاننامه کارشناسی ارشد رشته مهندسی کشاورزی - علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز.
Autio, K. Mattila, D. Sandholm, T. (1992). Detection of active yeast cells (Saccharomyces cerevisiae) in frozen dough sections. Applied and Environmental Microbiology, 58: 2153-2157.
Dobbes, M. Peleg, R.E. Mudgett. A. (1982). Some physical characteristics of active dry yeast, Powder technology. 32: 63 – 69.
Girula, M. Watson, M. Pohl, H.A. (1985). Relationship between dough-raising activity of baker's yeast and the fraction of 'vital' cells as determined by Methylene Blue staining or by Dielectrophoresis, Journal of Biological Physics, 13.
Guillermo, G. Bellido, a. Martin, G. Scanlon, A. John, H. (2009). Measurement of dough specific volume in chemically leavened dough systems. Journal of Cereal Science, 49: 212–218.
Kasaie, Z. Peighambardoust, S.H. Dadpour, M.R. Moosavy, M.H. Shakuoie Bonab, E. (2013). Comparing different methods for evaluating gassing power and fermentation activity of baker's yeast. Food research journal, 22:432-442
Katina, K. 2005. Sourdough: a tool for the improved flavour, texture and shelf-life of wheat bread. VTT
Biotechnology. VTT Technical Research Centre of Finland, VTT 569: 13-41, 53-75.
Pieghambardoust S.H., E. Fallah, Hamer. R.A,Van Der Goot. (2010). Aeration of bread dough influenced by different way processing. Journal of Cereal Science. 59(1):89-95.
Rubenthaler, G.L. Finney, P.L. Demaray, D.E. Finney, K.F. (1980). Gasograph, design, construction, and reproducibility of a sensitive 12-channel gas recording instrument. Cereal Chemistry, 57: 212-216.
Yokoyama, H. Danjo, T. Ogawa K. Wakabayashi, H. (1997). A vital staining technique with fluorescein diacetate (FDA) and propidium iodide (PI) for the determination of viability of myxosporean and actinosporean spores. Journal of Fish Diseases. 20: 4, 281–286.