Effect of Ultraviolet and Tungsten Rays on Aflatoxin B1 in Rice Flour
Subject Areas : MicrobiologyM. Bazgir 1 , H. Mohammadimanesh 2 * , S.R. Fani 3
1 - Assistant Professor of the Department of Physical Chemistry, Faculty of Chemistry, University of Yazd, Yazd, Iran.
2 - Assistant Professor of the Department of Physical Chemistry, Faculty of Chemistry, University of Yazd, Yazd, Iran.
3 - Assistant Professor of Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, Iran.
Keywords: Aflatoxin, Rice Flour, Tungsten, Ultraviolet Ray,
Abstract :
Introduction: Aflatoxins are secondary metabolites produced by some species of Aspergillus fungus on agricultural products. They have great health, medical and economic significance due to mutagenic and carcinogenic effects on consumers. The purpose of this study is to compare ultraviolet and tungsten rays in reducing aflatoxin B1 in rice flour. Materials and Methods: Contaminated rice flour with two concentrations of 50 and 100 ng/g of aflatoxin B1 that produced by Aspergillus flavus in the laboratory were illuminated at 5 times 10, 20, 30, 40 and 50 minutes, with two different distances of 7 and 14 cm from ultraviolet light source with wavelength 366 nm and tungsten 100 W. Aflatoxin content was measured using competitive ELISA in two replications. Aflatoxin levels were compared with control samples by SAS (Release 9.1, SAS Institute Inc., Cary, NC) software using Duncan test. Results: The results showed that maximum (67 and 68%) and minimum (14 and 18%) reduction of aflatoxin B1 occur after 50 and 10 minutes irradiation at 7 and 14 cm, by ultraviolet and tungsten light, respectively. The initial concentrations of Aflatoxin B1 did not affect the test, but reducing the distance to the source of light and increasing exposure time led to a further reduction of aflatoxin (P≤0.01). Conclusion: Reducing the distance between rice flour and ultraviolet or tungsten ray source decreases aflatoxin further. On the other hand, the longer exposure to radiation, the more aflatoxin declines. The use of these rays can be considered in aflatoxin mitigation of food.
درگاهی، ر.، مرادی، م.، فانی، س. ر. و معصومی، ح. (1393).ارزیابی میزان آفلاتوکسین B1در بخشهای مختلف میوه پسته و تأثیر مراحل فرآوری بر مقدار آن. مجله بهداشت مواد غذایی، سال چهارم، شماره 3 ، صفحات 31-21.
فانی، س. ر.، مرادی، م.، تاجآبادیپور، ع.، درگاهی، ر. و میرابوالفتحی، م. (1392). نقش زودخندانی در آلودگی میوه پسته به گونههای آسپرژیلوسو آفلاتوکسین در استان کرمان. مجله علوم غذایی و تغذیه، سال یازدهم، شماره 3، صفحات 105-97.
مرادی، م. حکمآبادی، ح و فانی، س. ر. (1394). بررسی عوامل مؤثر بر رشد قارچی و تولید آفلاتوکسین در انبارهای پسته استان کرمان. مجله علوم غذایی و تغذیه، سال دوازدهم، شماره 2، صفحات 92-83.
Amaike, S. & Keller N. P. (2011). Aspergillus Flavus. Annual Review Phytopathology, 49, 107-133.
Chun, H. S., Kim, H. J., Ok, H. E., Hwang, J. B. & Chung, D. H. (2007). Determination of aflatoxin levels in nuts and their products consumed in South Korea. Food Chemistry, 102(1), 385-391.
Diao, E., Li, X., Zhang, Z., Ma, W., Ji, N. & Dong, H. (2015). Ultraviolet irradiation detoxification of aflatoxins. Trends in Food Science & Technology, 42(1), 64-69.
Fani, S. R., Moradi, M., Probst, C., Zamanizadeh, H. R., Mirabolfathy, M., Haidukowski, M. & Logrieco, A. F. (2014). A critical evaluation of cultural methods for the identification atoxigenicAspergillus flavus isolates for aflatoxin mitigation in pistachio orchards of Iran. European Journal of Plant Pathology, 140(4), 631-642.
International Agency for Research on Cancer. (1994). IARC monographs on the evaluation of carcinogenic risks to humans (Vol. 59). International Agency for Research on Cancer.
Liu, R., Jin, Q., Tao, G., Shan, L., Huang, J., Liu, Y., Wang, X., Mao, W. & Wang, S. (2010). Photodegradation kinetics and byproducts identification of the Aflatoxin B1 in aqueous medium by ultra‐performance liquid chromatography–quadrupole time‐of‐flight mass spectrometry. Journal of Mass Spectrometry, 45(5), 553-559.
Nieto, L. M., Hodaifa, G. & Casanova, M. S. (2009). Elimination of pesticide residues from virgin olive oil by ultraviolet light: preliminary results. Journal of Hazardous Materials, 168(1), 555-559.
Nkama, I., Nobbs, J. H. & Muller, H. G. (1987). Destruction of aflatoxin B1 in rice exposed to light. Journal of Cereal Science, 5(2), 167-173.
Milićević, D. R., Škrinjar, M. & Baltić, T. (2010). Real and perceived risks for mycotoxin
contamination in foods and feeds: challenges for food safety control. Toxins, 2(4), 572-592.
Samarajeewa, U., Sen, A. C., Cohen, M. D. & Wei, C. I. (1990). Detoxification of aflatoxins in foods and feeds by physical and chemical methods. Journal of Food Protection, 53(6), 489-501.
Sashidhar, R. B. (1993). Fate of aflatoxin B1 during the industrial production of edible defatted peanut protein flour from raw peanuts. Food Chemistry, 48(4), 349-352.
Wang, B., Mahoney, N. E., Pan, Z., Khir, R., Wu, B., Ma, H. & Zhao, L. (2016). Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control, 59, 461-467.
_||_