Ultrasound-Assisted Extraction of Antioxidant Extract from Lettuce (Lactuca sativa L.) Wastes and Evaluation of the Antioxidative Activity
Subject Areas : MicrobiologyN. Ahmadi Kamazani 1 * , A. H. Elhamirad 2 , M. Ghavami 3 , M. Moridi Farimani 4 , M. Armin 5
1 - دانش آموخته دکترای تخصصی گروه علوم و صنایع غذایی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
2 - د
انشیار
گروه
علوم و
صنایع
غذایی،
واحد
سبزوار،
دانشگاه
آزاد
اسلامی، سبزوار، ایران
3 - استاد گروه علوم و صنایع غذایی، دانشکده علوم و مهندسی صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - دانشیار گروه فیتوشیمی، پژوهشکدۀ گیاهان و مواد اولیۀ دارویی، دانشگاه شهید بهشتی، تهران، ایران
5 - دانشیار گروه زراعت و اصلاح نباتات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
Keywords: Antioxidant Extract, Lettuce Wastes, Oxidative Stability, Tallow Olein, Ultrasound-Assisted Extraction,
Abstract :
Introduction: In spite of the high antioxidant activity in lettuce wastes, there is not any reports on the application of the antioxidant extract from lettuce wastes to stabilize the edible oils. The aims of this study were to investigate the recovery of antioxidant extract from outer leaves of lettuce as the wastes via ultrasonic extraction and evaluate the antioxidative effect of the extract. Materials and Methods: The powdered lettuce sample was extracted with ethanol/H2O (70:30, V/V) using ultrasonic extraction at the temperature of 50˚C and time of 30 minutes with the frequency of 40 KHZ and solid to solvent ratio of 1:20 (w/v) in an ultrasound water bath. The extractive yield, total phenolic compound (TPC) and IC50 were determined. The yielded extract was added to tallow olein in order to study its stabilizing effect. The protective effects of the extracts at different concentrations were evaluated by monitoring the peroxide, p-anisidine, totox values and oxidative stability index levels under accelerated oxidation. The antioxidant activities of the extract of the lettuce wastes at different concentrations to stabilise tallow olein were compared to BHA and BHT at 200 ppm concentration. Results: The extractive yield, TPC and IC50 were 30.45 ± 1.20 (%), 600.15 ± 6.29 (mg GAE /100g DW) and 174.05 ppm, respectively. The results indicated that the extract at 2000 ppm have a good activity as compared to BHT at 200 ppm. Conclusion: The antioxidant extract of the lettuce wastes might used as a natural antioxidant in retarding the oxidation rate of edible oils.
الهامی راد، ا. ح. و حداد خداپرست، م. ح. (1390). بررسی خصوصیات آنتی اکسیدانی و پایداری حرارتی فسفولیپیدها در محیط تالواولئین. مجله علوم غذایی و تغذیه، سال هشتم، شماره 3، ص 71-64.
الهامی راد، ا. ح.، قوامی، م. و حداد خداپرست، م. ح. (1390). بررسی فعالیت آنتی اکسیدانی برخی ترکیبات فنولی در محیط تالواولئین. فصلنامه علوم و صنایع غذایی، دانشگاه تربیت مدرس، دوره 8، (1)، 33، 25-13.
الهامی راد، ا. ح. و قوامی، م. (1389). بررسی اثرات سینرژیستی فسفولیپیدها بر اسید گالیک در محیط تالواولئین. مجله علوم و فناوری غذایی، سال دوم، شماره اول، ص 17-9.
سیمان پور، م.، قراچورلو، م. و فهیم دانش، م. (1391). بررسی توزیع کلسترول در فراکسیونهای مختلف چربی دنبه گوسفندی. مجله علوم غذایی و تغذیه، سال نهم، شماره 3، ص30-21.
قراچورلو، م. (1385) .ارزیابی کیفیت، فراکسیونگیری و بهبود خصوصیات کیفی چربی حیوانی جهت تولید
روغنهایی با خصوصیات کاربردی مناسب در صنایع غذایی، پایان نامه دکترای رشته مهندسی کشاورزی علوم و صنایع غذایی دانشگاه آزاد اسلامی واحد علوم و تحقیقات، دانشکده علوم و مهندسی صنایع غذایی.
Alothman, M., Bhat, R. & Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry 115, 785–788.
Altunkaya, A., Becker, E. M., Gökmen, V. & Skibsted, L. H. (2009). Antioxidant activity of lettuce extract (Lactuca sativa) and synergism with added phenolic antioxidants. Food Chemistry, 115, 163–168.
Amirah, D. M., Reddy, P. & Maksudur, R. K. (2012). Comparison of extraction techniques on extraction of Gallic acid from stem bark of Jatropha curcas, Journal of Applied Sciences, 12, 1106–1111.
Anwar, F., Bhanger, M. I. & Kazi, T. G. (2003). Relationship between Rancimat and active oxygen method values at varying temperatures for several oils and fats. Journal of the American Oil Chemists’ Society, 80, 151-155.
Anwar, F., Manzoor, M. & Bajwa, J. R. (2004). Antioxidant activity of solvent extracts of strawberry (F. ananassa) using various antioxidant assays. Pakistan Journal of Analytical and Environmental Chemistry, 5, 28–37.
Arawande, J. O. & Ogunyemi, O. Y. (2012). Effect of Methanol and Water Extract of African Lettuce (Lactuca taraxacifolia) on Stability of Refined Palm Kernel Oil. Official Journal of Nigerian Institute of Food Science and Techonology, 30, 1-7.
Arumugam, P. P., Ramamurty, P., Santhiya, S. T. & Ramesh, A. (2006).Antioxidant activity measured in different solvent fractions obtainedfrom Mentha spicata Linn: An analysis by ABTS˚ + decolorization assay. Asia Pacific Journal of Clinical Nutrition, 15, 20-24.
Bahorun, T., Luximon-Ramma, A., Crozier, A. & Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 84, 1553–1561.
Bartnik, D. D., Mohler, C. M. & Houlihan, M. (2006). Methods for the production of food grade extracts, United States Patent Application, 20060088627, April 27.
Caldwell, C.R. (2003). Alkylperoxyl radical scavenging activity of red leaf lettuce
(Lactuca sativa L.) phenolics. Journal of Agricultural and Food Chemistry, 51, 4589–4595.
Da Porto, C., Porretto, E. & Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry, 20, 1076–1080.
Durling, N. E., Catchpole, O. J., Grey, J. B., Webby, R. F., Mitchell, K. A., Foo, L. Y. & Perry, N. B. (2007). Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food Chemistry, 101, 1417–1424.
Edziri, H.L., Smach, M.A., Mahjoub, M.A., Mighri, Z., Aouni, M. & Mastouri, M. (2011). Antioxidant, antibacterial, and antiviral effects of Lactuca sativa extracts. Journal of Industrial Crops and Products, 34, 1182– 1185.
Elhamirad, A. H. & Zamanipoor, M. H. (2012). Thermal stability of some flavonoids and phenolic acidsin sheep tallow olein. European Journal of Lipid Science and Technology, 114, 602–606.
Esclapez, M. D., García-Pérez, J. V., Mulet, A. & Cárcel, J. A. (2011). Ultrasound-assisted extraction of natural products, Food Engineering Reviews, 3,108–120.
Farhoosh, R. (2007). The effect of operational parameters of the Rancimat method on the determination of the oxidative stability measures and shelf-life prediction of
soybean oil. Journal of the American Oil Chemists’ Society, 84, 205–209.
Fennema, O. R. (1996). Food Chemistry, Third Edition, Marcel Dekker, Inc.
Ferreira, A. (2011). Influence of spent coffee grounds on growth and chemical and biological properties of lettuce (Lactuca sativa L.). Master Thesis. School of Agriculture, Polytechnic Institute of Braganc¸ a, Portugal.
Firestone, D. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists, 15 th edn., Arlington, USA.
Firestone, D. (1994). Official Methods and Recommended Practices of the American Oil Chemists’ Society. AOCS Press, Champaign, IL.
Gomathi, R., Anusuya, N., Chitravadivu, Ch. & Manian, S. (2011). Antioxidant activity of lettuce tree (Pisonia morindifolia R.Br.) and tamarind tree (Tamarindus indica L.) and their efficacy in peanut oil stability. Food Science and Biotechnology, 20, 1669-1677.
Goli, A. H., Barzegar, M. & Sahari, M. A. (2005). Antioxidant activity and total phenolic compounds of pistachio (pistachia vera) hull extracts. Food Chemistry, 92: 521-525.
Gomes, T., Delgado, T., Ferreira, A., Pereira, J. A., Baptista, P., Casal, S. & Ramalhosa, E. (2013). Application of response surface methodology for obtaining lettuce. (Lactuca sativa L.) by-products extracts with high antioxidative properties. Journal of Industrial Crops and Products, 44, 622– 629.
Harsha, S. N. & Anilakumar, K. R. (2013). Protection against aluminium neurotoxicity: A repertoire of lettuce antioxidants. Biomedicine & Aging Pathology, 3, 179-184.
Harsha, S. N., Anilakumar, K. R. & Mithila, M. V. (2013). Antioxidant properties of Lactuca sativa leaf extract involved in the protection of biomolecules. Biomedicine & Preventive Nutrition, 3, 367-373.
Im, S. E., Yoon, H., Nam, T. G., Heo, H. J., Lee, C. Y. & Kim, D.O. (2010). Anti neurodegenerative effect of phenolic extract and caffeic acid derivatives in romaine lettuce on neuron-like PC-12 cell. Journal of Medicinal Food, 13, 779–784.
ISO. (1990). Animal and vegetable fats and oils – determination of analysis by chromatography of methyl esters of fatty acids.
ISO. (2000). Animal and vegetable fats and oil – Preparation of methyl esters of fatty acids. 2nd .ed .5509.
Kabir, F., Tow, W.W., Hamauzu, Y., Katayama, S Tanaka, S. & Nakamura, S. (2015). Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chemistry, 167, 358–362.
Li, Y., Guo, C., Yang, J., Wei, J., Xu, J. & Cheng, S. (2006). Evaluation of Antioxidant Properties of Pomegranate Peel Extract in Comparison with Pomegranate Pulp Extract. Food Chemistry, 96, 254–260.
Llorach, R., Tomás-Barberán, F. A. & Ferreres, F. (2004). Lettuce and chicory byproducts as a source of antioxidant phenolic extracts. Journal of Agricultural and Food Chemistry, 52, 5109–5116.
L´opez, A., Javier, G.-A., Fenoll, J., Hell´in, P. & Flores, P. (2014). Chemical composition and antioxidant capacity of lettuce: comparative study of regular-sized (Romaine) and baby-sized (Little Gem and Mini Romaine) types, Journal of Food Composition and Analysis, 33, 39-48.
Mendez, E., Sanhueza, J., Speisky, H. & Valenzuela, A.) 1996(. Validation of the Rancimat test for the assessment of the relative stability of fish oils. Journal of the American Oil Chemists’ Society, 73, 1033–1037.
Mohd Nor, F., Mohamed, S., Idris, N. A. & Ismail, R. (2008). Antioxidative properties of Pandanus amaryllifolius leaf extracts in accelerated oxidation and deep frying studies. Food Chemistry, 110, 319–327.
Nantitanon, W., Yotsawimonwat, S. & Okonogi, S. (2010). Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT - Food Science and Technology, 43, 1095-1103.
Omar, K. A., Shan, L., Zou, X., Song, Z. & Wang, X. (2009). Effects of two emulsifiers on yield and storage of flaxseed oil powder by response surface methodology. Pakistan Journal of Nutrition, 8, 1316–1324.
Ozgen, S. & Sekerci, S. (2011). Effect of leaf position on the distribution of phytochemicals and antioxidant capacity among green and red lettuce cultivars. Spanish Journal of Agricultural Research, 9, 801–809.
Pepe, G., Sommella, E., Manfra, M., De Nisco, M., Tenore, G. C., Scopa, A., Sofo, A., Marzocco, S., Adesso, S., Novellino, T. & Campiglia, P. (2015). Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L., var. Maravilla de Verano). Food Chemistry, 167,153-61.
Peschel, W., Sánchez-Rabaneda, F., Diekmann, W., Plescher, A., García, I., Jiménez, D., Lamuela- Raventós, R., Buxaderas S. & Codina C. (2006). An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chemistry, 97, 137–150.
Pokorny, J., Ysnishlieve, N. & Gordon, M. (2001). Antioxidants in Food. Practical application. Cambridge, CRC Press. Woodhead Publishing Limited. England.
Prior, R. L. (2004). Absorption and metabolism of anthocyanins: Potential health effects. In M. Meskin, W. R. Bidlack, A. J. Davies, D. S. Lewis, & R. K. Randolph (Eds.), Phytochemicals: Mechanisms of action (pp.1). Boca Raton, FL: CRC Press.
Rahmat, A., Kumar, V., Fong, L. M., Endrini, S. & Abdullah, S. H. (2003). Determination of total antioxidant activity in three types of local vegetables shoots and the cytotoxic effect of their ethanolic extracts against different cancer cell lines. Asia Pacific Journal of Clinical Nutrition, 12, 292- 295.
Roy, L. C., Arabshahi- Delouee, S. & Urooj, A. (2012). Antioxidant efficacy of Mulberry (Morus Indica L.) leaves extract and powder in edible oil. International Journal of Food Properties, 13, 1-9.
Serjouie, A., Tan, C. P., Mirhosseini, H. & Che Man, Y. B. (2010). Effect of vegetable-basedoil blends on physicochemical properties of oils during deep – fat frying. American Journal of Food Technology, 5, 310–323.
Shimada, K., Fujikawa, K., Yahara, K. & Nakamura, T. (1992). Antioxidative properties of xanthin on auto oxidation of soybean oil in cyclodextrin emulsion. Agricultural and Food Chemistry, 40, 945-948.
Shyamala, B. N., Gupta, S., Lakshmi, A. J. & Prakash, J. (2005). Leafy vegetable extracts-antioxidant activity and effect on storage stability of heated oils. Innovative Food Science and Emerging Technologies, 6, 239-245.
Souri, E., Amin, G., Farsam, H. & Andaji, S. (2004). The antioxidant activity of some commonly used vegetables in Iranian diet. Fitoterapia, 75, 585–588.
Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Sultana, B., Anwar, F. & Przybylski, R. (2007). Antioxidant potential of corncob extracts for stabilization of corn oil subjected to microwave heating. Food Chemistry, 104, 997–1005.
Tabaraki, R. & Rastgoo, S. (2014). Comparison between conventional and ultrasound-assisted extractions of natural antioxidants from walnut green husk. Korean Journal of Chemical Engineering, 31, 676-683.
Taghvaei, M., Jafari, S.M., Sadeghi Mahoonak, A., Mehregan Nikoo, A., Rahmanian, N., Hajitabar, J. & Meshginfar, N. (2014). The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. LWT - Food Science and Technology, 56, 124-130.
Tiveron, A. P., Melo, P. S., Bergamaschi, K. B., Vieira, T. M. F. S., Regitano-d’Arce, M. A. B. & Alencar, S. M. (2012). Antioxidant Activity of Brazilian Vegetables and Its Relation with Phenolic Composition. Search Results International Journal of Molecular Sciences, 13, 8943-8957.
Tynek, M., Szukalska, E. & Bartoszek, A. (2008). Influence of cabbage juices on oxidative changes of rapeseed oil and lard. European Journal of Lipid Science and Technology, 110, 1142–1149.
Viacava, G. E., González-Aguilar, G. & Roura, S. I. (2014). Determination of Phytochemicals and Antioxidant Activity in Butterhead Lettuce Related to Leaf Age and Position. Journal of Food Biochemistry, 38, 352–362.
Viacava, G. E., Roura, S. I. & Ag¨uero, M. V. (2015). Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity. Chemometrics and Intelligent Laboratory Systems, 146, 47-54.
Wijngaard, H. H., Rößle, C. & Brunton, N. (2009). A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chemistry, 116, 202–207.
Ying, Z., Lei, Y., Yuangang, Z., Xiaoqiang, C., Fuji, W. & Fang, L. (2010). Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chemistry, 118, 656–662.