Study of Nano Composite Films Made of Starch and Chitosan with Silver Nanoparticles and Comparison of their Antimicrobial Effects
Subject Areas : MicrobiologyZ. Badiei 1 , S. A. Yasini Ardakani 2 * , M. Mirjalili 3
1 - M. Sc. Student of the Department of Food Technology, Yazd Branch, Islamic Azad University, Yazd, Iran.
2 - دانشیار علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران
3 - Associate Professor, Faculty of Textile and Polymer, Yazd Branch, Islamic Azad University, Yazd, Iran
Keywords: Chitosan, Nanosilver, Starch,
Abstract :
Introduction: Food packaging is a vital approach for ensuring food safety. Due to the high importance of food packaging, nanotechnology can improve packaging quality and consequently ensure the safety. Materials and Methods: Nanosilver particles were synthesized and starch-based nanocomposite films, chitosan with the content of 0, 250 and 500 ppm nanosilver particles were produced and their properties including mechanical properties, water vapour permeability, solubility, swelling and anti-microbial properties of the produced films were studied by measuring the diameter of the bright area in the disk permeability test. In this test, four types of bacteria including Staphylococcus aureus, Escherichia coli, Aspergillus niger and Candida albicans were employed. The colour changes in the films after the addition of nanosilver were examined and the size of synthesized nanosilver particles was determined by using DLS. Results: The addition of nanosilver to the films increased the water vapour permeability. Tensile strength was increased and this increase in the case of chitosan films was significant whereas in the case of starch film was not significant. Elongation at break was also increased in all the films. Although the addition of nanosilver increased the solubility and swelling, this increase was not significant. Films containing nanosilver has an antimicrobial effect on all the microorganisms that were investigated (p<0.05). Conclusion: In general, the properties of the films produced by nanosilver particles were completely affected by the concentration of the used nanosilver except for water vapour permeability where this led to improvement of the properties of the films.
برزگر، ح.، عزیزی، م.، برزگر، م. و حمیدی اصفهانی، ز. (1392). تولید و ارزیابی خواص فیلم فعال نانو کامپوزیتی نشاسته_ رس حاوی اسانس دارچین و سوربات پتاسیم. نشریه پژوهش و نوآوری در علوم و صنایع غذایی. جلد دوم، شماره2،صفحات 178-167.
عبدالهی، م.، رضایی، م. و فرزی، غ. (1390). تهیه و ارزیابی خصوصیات نانوکامپوزیت زیست تخریب پذیر کیتوزان/ نانورس جهت کاربرد در بستهبندی مواد غذایی. نشریه پژوهشهای علوم و صنایع غذایی ایران، جلد هفتم، شماره 1، صفحات 79-71.
گنجه، م.، جعفری، س. م. و امان جانی، م. (1392). استفاده از پوششهای با خاصیت ضد میکروبی در بستهبندی مواد غذایی. فصلنامه علمی- ترویجی علوم و فنون بستهبندی. سال چهارم، شماره شانزدهم، صفحات 23-16.
مرادی، م.، تاجیک، ح.، رضوی روحانی، س. م.، ارومیهای، ع.، ملکی نژاد، ح. و قاسم مهدی، ه. (1390). تهیه و ارزیابی خصوصیات فیلم آنتی اکسیدانی کیتوزان حاوی عصاره دانه انگور. فصلنامه گیاهان دارویی. سال یازدهم، دوره دوم، شماره 42، صفحات52-43
مرتضویان، س. م.، عزیزی، م. ح. و سهراب وندی، س. (1389). فیلمهای خوراکی: شاخصهای کیفی و روشهای تولید. فصلنامه علوم و صنایع غذایی. دوره هفتم، شماره 4، صفحات117-107.
نوشیروانی، ن.، قنبرزاده، ب. و انتظامی، ع. (1391). ویژگیهای ریز ساختاری و فیزیکی (نفوذ پذیری، مکانیکی، حرارتی) فیلمهای نانو کامپوزیتی بر پایه نشاسته، پلی وینیل الکل، نانو رس. نشریه پژوهشهای علوم و صنایع غذایی ایران. جلد هشتم، شماره 1، صفحات 59-49.
Afshari-Jouybari, H. & Farahnaky, A. (2011). Evaluation of Photoshop software potential for food colorimetry. Journal of Food Engineering, 106(2), 170-175.
Appendini, P. & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126.
Bourtoom, T. & Chinnan, M. S. (2008). Preparation and properties of rice starch–chitosan
blend biodegradable film. LWT-Food Science and Technology, 41(9), 1633-1641.
Chatterjee, B., Kulshrestha, N. & Gupta, P. N. (2016). Nano Composite Solid Polymer Electrolytes Based On Biodegradable Polymers Starch and Poly Vinyl Alcohol. Measurement.
Dadfar, S. A., Alemzadeh, I., Dadfar, S. R. & Vosoughi, M. (2011). Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer. Materials & Design, 32(4), 1806-1813.
De Azeredo, H. M. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253.
De Moura, M. R., Mattoso, L. H. & Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering, 109(3), 520-524.
Desai, R., Mankad, V., Gupta, S. K. & Jha, P. K. (2012). Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment. Nanoscience and Nanotechnology Letters, 4(1), 30-34.
Dutta, P. K., Tripathi, S., Mehrotra, G. K. & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food chemistry, 114(4), 1173-1182.
Egger, S., Lehmann, R. P., Height, M. J., Loessner, M. J. & Schuppler, M. (2009). Antimicrobial properties of a novel silver-silica nanocomposite material. Applied and Environmental Microbiology, 75(9), 2973-2976.
Frone, A. N., Nicolae, C. A., Gabor, R. A. & Panaitescu, D. M. (2015). Thermal properties of water-resistant starch–polyvinyl alcohol films modified with cellulose nanofibers. Polymer Degradation and Stability, 121, 385-397.
Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W. & Yang, X. (2007). Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology, 18(28), 285604.
Han, W., Yu, Y., Li, N. & Wang, L. (2011). Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin, 56(12), 1216-1225.
Haider, S., Park, S. Y., Saeed, K. & Farmer, B. L. (2007). Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes. Sensors and Actuators B: Chemical, 124(2), 517-528.
Jangchud, A. & Chinnan, M. S. (1999). Peanut protein film as affected by drying temperature and pH of film forming solution. Journal of Food Science, 64(1), 153-157.
Kibar, E. A. A. & Us, F. (2013). Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. Journal of Food Engineering, 114(1), 123-131.
Marsh, K. & Bugusu, B. (2007). Food packaging—roles, materials, and environmental issues. Journal of Food Science, 72(3), R39-R55.
Mihindukulasuriya, S. D. F. & Lim, L. T. (2014). Nanotechnology development in food packaging: A review. Trends in Food Science & Technology, 40(2), 149-167.
Miranda, C. S., Ferreira, M. S., Magalhães, M. T., Bispo, A. P. G., Oliveira, J. C., Silva, J. B. & José, N. M. (2015). Starch-based films plasticized with glycerol and lignin from piassava fiber reinforced with nanocrystals from eucalyptus. Materials Today: Proceedings, 2(1), 134-140.
Mu, C., Guo, J., Li, X., Lin, W. & Li, D. (2012). Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 27(1), 22-29.
Orozco, V. H., Kozlovskaya, V., Kharlampieva, E., López, B. L. & Tsukruk, V. V. (2010). Biodegradable self-reporting nanocomposite films of poly (lactic acid) nanoparticles engineered by layer-by-layer assembly. Polymer, 51(18), 4127-4139.
Sanguansri, P. & Augustin, M. A. (2006). Nanoscale materials development–a food industry perspective. Trends in Food Science & Technology, 17(10), 547-556.
Sozer, N. & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82-89.
Srinivasa, P. C., Ramesh, M. N., Kumar, K. R. & Tharanathan, R. N. (2003). Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohydrate Polymers, 53(4), 431-438.
Tharanathan, R. N. & Saroja, N. (2001). Hydrocolloid-based packaging films-alternate to synthetic plastics. Journal of Scientific and Industrial Research, 60(7), 547-559.
Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and
future. Trends in Food Science & Technology, 14(3), 71-78.
Wu, C., Tian, J., Li, S., Wu, T., Hu, Y., Chen, S. & Ye, X. (2016). Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging. Carbohydrate Polymers, 146, 10-19.
Xie, F., Pollet, E., Halley, P. J. & Avérous, L. (2013). Starch-based nano-biocomposites. Progress in Polymer Science, 38(10), 1590-1628.
Yoksan, R. & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering: C, 30(6), 891-897.