The Effect of Drying Process on the Physiochemical Characteristics and Quality of Basil Leaf Leaves
Subject Areas : Microbiology
1 - M. Sc Student of the Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
2 - Associate Professor of the Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
Keywords: Basil, Drying, Hot Air Oven, microwave,
Abstract :
Introduction: Basil contains high phenolic compounds and its seeds contain mucilages. By investigation the essential oils of this plant, and especially its phenylpropanoid compounds, have been identified as the main medicinal product. Materials and Methods: In this research, basil leaves were dried by three methods: shadow, drying oven method at 40 and 60° C and microwave method at 180 and 360 W. In order to increase the heat transfer in short time some effective factors concerned with the leaves, namely moisture, iron, potassium,vitamin C and polyphenol contents were determined. Results: The first stage of drying rate is constant and controlled by external factors, was seen only in the shadow drying method. In two other methods, this stage has been almost eliminated. Forced convection heat transfer coefficients is higher than natural convection coefficient. Therefore in the oven drying method, mass transfer rate is higher than the other methods. With increasing microwave power, drying time decreased. The determined amounts of iron, potassium and vitamin C showed that there is a significant difference between different drying methods (P <0.05). The longest drying time was in shadow with1800 minutes and the highest amount of vitamin C, iron and phenolic compounds was in the dried treatment in the shade. Conclusion: According to the results, it can be stated that the drying of the basil leaf using shade drying and microwave drying at 180 W, are desirable because the amount of active ingredients in the plant is considerably retained.
Akpinar, E., Bicer, Y. &Cetinkaya, F. (2006). Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun Journal of Food Engineering, 75(3), 308-315.
Alibas, İ. (2012). Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. Tarim Bilimleri Dergisi, 18(1), 43-53.
Alibas, İ. & Köksal, N. (2014). Convective, Vacuum and Microwave Drying Kinetics of Mallow Leaves and Comparison of Color and Askorbik Acid Values of Three Drying Methods. Food Science and Technology, 34(2), 358-364.
Anon. (2008). Determination of iron content – Photometric method. Iranian National Standardization Organization. ISIRI Standard No. 1073. [In Persian]
Anon. (2011). Fruits, vegetables and derived products – determination of ascorbic acid- part2: routine method. Iranian National Standardization Organization. ISIRI Standard No. 14617-2. [In Persian]
Anon. (2013). Determination of water-soluble potassium content- preparation of the tests Iranian National Standardization Organization. ISIRI Standard No. 16515. [In Persian]
Calín-Sánchez, Á., Lech, K., Szumny, A., Figiel, A. & Carbonell-Barrachina, Á. A., (2012). Volatile composition of sweet basil
essential oil (Ocimum basilicum L.) as affected by drying method. Food Research International, 48(1), 217-225.
Celen, S. & Kahveci, K. (2013). Microwave Drying Behaviour of Tomato Slices. Czech Journal Food Science, 31(2), 132-138.
Chan, E., Lim, Y., Wong, S., Lim, K., Tan, S., Lianto F. & Yong, M. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172.
Diamante, L.M. & Munro, P.A. (1991). Mathematical modeling of the thin layer solar drying of sweet potato slices. International Journal of Food Science and Technology, 51, 271-276.
Joshi, P. & Mehta, D. (2010). Effect of dehydration on the nutritive value of drumstick leaves. Journal of Metabolomics and Systems Biology, 1(1), 5-9.
Karaaslan, S. & Tuncer, I. (2008). Development of a drying model for combined microwave– fan-assisted convection drying of spinach, Biosystems Engineering, 100(1), 44-52
Khakbaz Heshmati, M. & Seifi Moghaddam, A. (2016). Application of intermittent microwave – convective hot air technique on quality and nutritional characteristics of dried kiwi slices. First International Food Science and Technology Congress and 24th National Food Science and Technology Congress of of Iran, Tehran, Iranian Food Science and Technology Association, Tarbiat Modares University. [In Persian]
Lima-Corrêa, R.D.A.B., dos Santos Andrade, M., Freire, J.T. & do Carmo Ferreira, M. (2017). Thin-layer and vibrofluidized drying of basil leaves (Ocimum basilicum L.): analysis of drying homogeneity and influence of drying conditions on the composition of essential oil and leaf colour. Journalof Applied Research on Medicinal and Aromatic Plants, 7, 54-63.
Mirzabeigi Kesbi, O. (2010). Investigation and modeling drying lemon slices using combined convective-microwave methods. Master Thesis.Isfahan University of technology. [In Persian]
Mokhtari, N. & Goli, S. A. (2011). Evaluation of seed antioxidant properties and the effect of drying method onphysicochemical
properties of celery. Thesis. Ministry of Science, Research and Technology - Isfahan University of Technology - Faculty of Agriculture. [In Persian]
Moslemi, S. A. & Mirzaei, H. (2014). Comparison of the effect of hot air drying method and microwaving method on apricots qualutative characteristics. Third National Conference on Food Science and Technology.Islamic Azad University Quchan Branch.27-28 October. [In Persian]
Motavali, A., Hashemi, S. J. & Taghinejad, E. (2019). Investigation of Energy Parameters, Environment and Social Costs for Drying Process (Case Study: Apple Slices). Agricultural Mechanization and Systems Research, 20(72), 37-54. [In Persian]
Noori, M., Kashaninejad, M., Daraei Garme Khani, A. & Bolandi, M. (2013). Optimization of drying process of parsley using the combination of hot air and microwave methods. Electronic Journal of Food Processing and Preservation, 4(2), 103-122. [In Persian]
Ostadzadeh, H. & Seyyed-Alangi, S. Z. (2016). Effect of drying process on qualitative and quantitative properties of watercress (Nasturtium officinale) leaves. Journal Innovative Food Technologies, 4 (1) 1-16. [in farsi]
Ozkan, I. A., Akbulut, B. & Akbudak, N. (2010). Microwave drying charecteristic of spinach. Journal of Food Engineering, 78(2), 557-583.
Parmar, M. R., Mahendrasinh, T., Kumpavat, J., Sevantilal, D. & Shyamsundar, S. (2017). A comparative study on drying of basil leaves. AgricEngInt: CIGR Journal, 19(1), 169- 177.
Pirbalouti, A. G., Mahdad, E. & Craker, L. (2013). Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chemistry, 141(3), 2440-2449.
Sangwan, A., Kawatra, A. & Sehgal, S. (2014). Nutritional Composition of Ginger Powder Prepared Using Various Drying Methods. Journal of Food Science and Technology, 51(9), 2260-2262.
Zirjani, L. &Tavakoli-Pour, H. (2010). Study of the possibility of banana leaf production by combined method of hot air drying and microwave.Iranian Journal of Food Science and Industry Research.6(1),58-67. [In Persian].
_||_Akpinar, E., Bicer, Y. &Cetinkaya, F. (2006). Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun Journal of Food Engineering, 75(3), 308-315.
Alibas, İ. (2012). Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. Tarim Bilimleri Dergisi, 18(1), 43-53.
Alibas, İ. & Köksal, N. (2014). Convective, Vacuum and Microwave Drying Kinetics of Mallow Leaves and Comparison of Color and Askorbik Acid Values of Three Drying Methods. Food Science and Technology, 34(2), 358-364.
Anon. (2008). Determination of iron content – Photometric method. Iranian National Standardization Organization. ISIRI Standard No. 1073. [In Persian]
Anon. (2011). Fruits, vegetables and derived products – determination of ascorbic acid- part2: routine method. Iranian National Standardization Organization. ISIRI Standard No. 14617-2. [In Persian]
Anon. (2013). Determination of water-soluble potassium content- preparation of the tests Iranian National Standardization Organization. ISIRI Standard No. 16515. [In Persian]
Calín-Sánchez, Á., Lech, K., Szumny, A., Figiel, A. & Carbonell-Barrachina, Á. A., (2012). Volatile composition of sweet basil
essential oil (Ocimum basilicum L.) as affected by drying method. Food Research International, 48(1), 217-225.
Celen, S. & Kahveci, K. (2013). Microwave Drying Behaviour of Tomato Slices. Czech Journal Food Science, 31(2), 132-138.
Chan, E., Lim, Y., Wong, S., Lim, K., Tan, S., Lianto F. & Yong, M. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172.
Diamante, L.M. & Munro, P.A. (1991). Mathematical modeling of the thin layer solar drying of sweet potato slices. International Journal of Food Science and Technology, 51, 271-276.
Joshi, P. & Mehta, D. (2010). Effect of dehydration on the nutritive value of drumstick leaves. Journal of Metabolomics and Systems Biology, 1(1), 5-9.
Karaaslan, S. & Tuncer, I. (2008). Development of a drying model for combined microwave– fan-assisted convection drying of spinach, Biosystems Engineering, 100(1), 44-52
Khakbaz Heshmati, M. & Seifi Moghaddam, A. (2016). Application of intermittent microwave – convective hot air technique on quality and nutritional characteristics of dried kiwi slices. First International Food Science and Technology Congress and 24th National Food Science and Technology Congress of of Iran, Tehran, Iranian Food Science and Technology Association, Tarbiat Modares University. [In Persian]
Lima-Corrêa, R.D.A.B., dos Santos Andrade, M., Freire, J.T. & do Carmo Ferreira, M. (2017). Thin-layer and vibrofluidized drying of basil leaves (Ocimum basilicum L.): analysis of drying homogeneity and influence of drying conditions on the composition of essential oil and leaf colour. Journalof Applied Research on Medicinal and Aromatic Plants, 7, 54-63.
Mirzabeigi Kesbi, O. (2010). Investigation and modeling drying lemon slices using combined convective-microwave methods. Master Thesis.Isfahan University of technology. [In Persian]
Mokhtari, N. & Goli, S. A. (2011). Evaluation of seed antioxidant properties and the effect of drying method onphysicochemical
properties of celery. Thesis. Ministry of Science, Research and Technology - Isfahan University of Technology - Faculty of Agriculture. [In Persian]
Moslemi, S. A. & Mirzaei, H. (2014). Comparison of the effect of hot air drying method and microwaving method on apricots qualutative characteristics. Third National Conference on Food Science and Technology.Islamic Azad University Quchan Branch.27-28 October. [In Persian]
Motavali, A., Hashemi, S. J. & Taghinejad, E. (2019). Investigation of Energy Parameters, Environment and Social Costs for Drying Process (Case Study: Apple Slices). Agricultural Mechanization and Systems Research, 20(72), 37-54. [In Persian]
Noori, M., Kashaninejad, M., Daraei Garme Khani, A. & Bolandi, M. (2013). Optimization of drying process of parsley using the combination of hot air and microwave methods. Electronic Journal of Food Processing and Preservation, 4(2), 103-122. [In Persian]
Ostadzadeh, H. & Seyyed-Alangi, S. Z. (2016). Effect of drying process on qualitative and quantitative properties of watercress (Nasturtium officinale) leaves. Journal Innovative Food Technologies, 4 (1) 1-16. [in farsi]
Ozkan, I. A., Akbulut, B. & Akbudak, N. (2010). Microwave drying charecteristic of spinach. Journal of Food Engineering, 78(2), 557-583.
Parmar, M. R., Mahendrasinh, T., Kumpavat, J., Sevantilal, D. & Shyamsundar, S. (2017). A comparative study on drying of basil leaves. AgricEngInt: CIGR Journal, 19(1), 169- 177.
Pirbalouti, A. G., Mahdad, E. & Craker, L. (2013). Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chemistry, 141(3), 2440-2449.
Sangwan, A., Kawatra, A. & Sehgal, S. (2014). Nutritional Composition of Ginger Powder Prepared Using Various Drying Methods. Journal of Food Science and Technology, 51(9), 2260-2262.
Zirjani, L. &Tavakoli-Pour, H. (2010). Study of the possibility of banana leaf production by combined method of hot air drying and microwave.Iranian Journal of Food Science and Industry Research.6(1),58-67. [In Persian].