Antibiotic residues in chicken meat and table eggs consumed in Islamic Republic of Iran Army
Subject Areas :
Food Science and Technology
A. Dabagh Moghadam
1
,
M. Bashashati
2
*
,
S. J. Hosseini-Shokouh
3
,
S.R. Hashemi
4
1 - Department of Health and Social Medicine, AJA university of Medical Sciences, Tehran, Iran
2 - AJA University of Medical Sciences, Tehran, Iran
3 - . Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
4 - Graduated from Faculty of Veterinary Medicine, Karaj Azad University, Karaj, Iran
Received: 2014-06-18
Accepted : 2017-05-22
Published : 2017-07-23
Keywords:
Chicken Meat,
Elisa,
egg,
Antibiotic residue,
MRL,
Abstract :
Antibiotics are widely used for preventing and treating several diseases, as well as for promoting growth in food-producing animals. This widespread use of antibiotic may cause residuals in foodstuffs, as well as the induction of allergic reactions in humans. In addition, resistance to pathogenic bacteria has been constantly weakening as a result of antibiotic use. The objectives of this study were to evaluate the presence of common three groups of antibiotics including fluoroquinolone, tetracycline and sulfonamide in chicken meat and table eggs consumed in Islamic Republic of Iran Army (IRIA). A total of 70 poultry samples, including chicken meat and eggs from IRIA‘s cold storages, were analyzed using ELISA for determination of antibiotic residues. Of the chicken samples analyzed, 35 (100%), 30 (85.71%) and 28 (80.00%) were contaminated with fluoroquinolone, tetracycline and sulfonamide, respectively. The mean levels (±SE) of fluoroquinolone, tetracycline and sulfonamide were found to be 72.59±4.30 µg/kg, 15.35±1.6 µg/kg and 36.52±3.61 µg/kg in chicken samples, respectively. 4 (11.43%) of chicken samples exceeded the maximum residue level (MRL). The study revealed that 4 (11.43%), 8 (22.85%) and zero of 35 egg samples were positive for fluoroquinolone, tetracycline and sulfonamide, respectively. The mean levels (±SE) of fluoroquinolone, tetracycline and sulfonamide were found to be 1.23±0.6 µg/kg, 2.84±0.94 µg/kg and zero µg/kg in egg samples, respectively. This study indicated that some consumable chicken meat and eggs of IRIA contain residues of antibiotics, therefore, it is necessary to monitor protein products regarding to antimicrobial residues for public health.
References:
· Alaboudi, A., Abu Basha, E. and Musallam, I. (2013). Chlortetracycline and sulfanilamide residues in table eggs: Prevalence, distribution between yolk and white and effect of refrigeration and heat treatment. Food Control, 33(1): 281-286.
· Alghamdi, M. S., Almustafa, Z. H., Elmorsy, F., Alfaky, A., Haider, I. and Essa, H. (2000). Residues of tetracycline compounds in poultry products in the eastern province of Saudi Arabia. Public Health, 114(4): 300-304.
· Almustafa, Z. H. andAlghamdi, M. S. (2000). Use of norfloxacin in poultry production in the eastern province of Saudi Arabia and its possible impact on public health. International Journal of Environmental Health Research, 10(4): 291-299.
· Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H. and Pittet, D. (2012). Ready for a world without antibiotics? The Pensieres Antibiotic Resistance Call to Action. Antimicrobial Resistance and Infection Control, 1(1): 11.
· Cheong, C. K., Hajeb, P., Jinap, S. and Ismail-Fitry, M. R. (2010). Sulfonamides determination in chicken meat products from Malaysia. International Food Research Journal, 17: 885-892.
· Dewdney, J. M., Maes, L., Raynaud, J. P., Blanc, F., Scheid, J. P., Jackson, T., Lens, S. and Verschueren, C. (1991). Risk assessment of antibiotic residues of beta-lactams and macrolides in food products with regard to their immuno-allergic potential. Food and Chemical Toxicology, 29(7): 477-83.
· Dey, B. P., Thaler, A. and Gwozdz, F. (2003). Analysis of microbiological screen test data for antimicrobial residues in food animals. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 38(3): 391-404.
· Donoghue, D. J. (2003). Antibiotic residues in poultry tissues and eggs: human health concerns? Poultry Science, 82(4): 618-621.
· Er, B., Onurdag, F. K., Demirhan, B., Ozgacar, S. O., Oktem, A. B. and Abbasoglu, U. (2013). Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poultry Science, 92(8): 2212-2215.
· European Commission 2010. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of the European Union, 53.
· Ezenduka, E. V., Oboegbulem, S. I., Nwanta, J. A. and Onunkwo, J. I. (2011). Prevalence of antimicrobial residues in raw table eggs from farms and retail outlets in Enugu State, Nigeria. Tropical Animal Health and Production, 43(3): 557-559.
· Gustafson, R. H. (1993). Historical perspectives on regulatory issues of antimicrobial resistance.Veterinary and Human Toxicology, 35(Suppl 1): 2-5.
· Hakimzadegan, M., Khalilzadeh Khosroshahi, M. and Hasseini Nasab, S. (2014). Monitoring of Antibiotic Residue in chicken eggs in Tabriz city by FPT. International Journal of Advanced Biological and Biomedical Research, 2(1): 132-140.
· Madadi, M., Bojmehrani, H. and Azari, M. 2014. Evaluation of drug interactions and prescription errors of poultry veterinarians in north of Iran. Poultry Science Journal, 2(1): 25-35.
· Moreno-Bondi, M. C., Marazuela, M. D., Herranz, S. and Rodriguez, E. (2009). An overview of sample preparation procedures for LC-MS multiclass antibiotic determination in environmental and food samples. Analytical and Bioanalytical Chemistry, 395(4): 921-946.
· Myllyniemi, A. L., Rannikko, R., Lindfors, E., Niemi, A. and Backman, C. (2000). Microbiological and chemical detection of incurred penicillin G, oxytetracycline, enrofloxacin and ciprofloxacin residues in bovine and porcine tissues. Food Additives and Contaminants, 17(12): 991-1000.
· Paige, J. C., Tollefson, L. and Miller, M. (1997). Public health impact on drug residues in animal tissues. Veterinary and Human Toxicology, 39(3): 162-169.
· Patterson, D. R. (1991). Quinolone toxicity: methods of assessment. The American Journal of Medicine, 91(6A): 35S-37S.
· Pena, A., Silva, L. J., Pereira, A., Meisel, L. and Lino, C. M. (2010). Determination of fluoroquinolone residues in poultry muscle in Portugal. Analytical and Bioanalytical Chemistry, 397(6): 2615-2621.
· Raison-Peyron, N., Messaad, D., Bousquet, J. and Demoly, P. (2001). Anaphylaxis to beef in penicillin-allergic patient. Allergy, 56(8): 796-797.
· Rao, G. S., Ramesh, S., Ahmad, A. H., Tripathi, H. C., Sharma, L. D. and Malik, J. K. (2001). Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intramuscular administration of enrofloxacin in goats. Veterinary Research Communications, 25(3): 197-204.
· Salama, N. A., Abou-Raya, S. H., Shalaby, A. R., Emam, W. H. and Mehaya, F. M. (2011). Incidence of tetracycline residues in chicken meat and liver retailed to consumers. Food Additives and Contaminants: Part B: Surveillance, 4(2): 88-93.
· Salehzadeh, A., Madadi, M., Salehzadeh, A., Rokni, N. and Golchinefar, F. (2006). Oxytetracycline Residue in Chicken Tissues from Tehran Slaughterhouses in Iran. Pakistan Journal of Nutrition, 5(4): 377-381.
· Salehzadeh, F., Salehzadeh, A., Rokni, N., Madani, R. and Golchinefar, F. (2007). Enrofloxacin Residue in Chicken Tissues from Tehran Slaughterhouses in Iran. Pakistan Journal of Nutrition, 6(4): 409-413.
· Samadpour, M., Stewart, J., Steingart, K., Addy, C., Louderback, J., Mcginn, M., Ellington, J. and Newman, T. (2002). Laboratory investigation of an E. coli O157:H7 outbreak associated with swimming in Battle Ground Lake, Vancouver, Washington. Journal of Environmental Health, 64(10): 16-20, 26, 25.
· Schwartz, H. J. and Sher, T. H. (1984). Anaphylaxis to penicillin in a frozen dinner. Annals of Allergy, 52(5): 342-3.
· Shahid, M. A., Siddique, M., Abubakar, M., Arshed, M. J., Asif, M. and Ahmad, M. (2007). Status of oxytetracycline residues in chicken meat in Rawalpindi/Islamabad area of Pakistan. Asian Journal of Poultry Science, 1, 8-15.
· Sundlof, S. F. (1994). Human Health Risks Associated with Drug Residues in Animal-Derived Foods. Journal of Agromedicine, 1(2): 5-20.
· Tajik, H, Razavi Rouhani, S., Pajohi Alamoti, M. and Mahmoudi R. (2011). Comparison of enrofloxacin residues in poultry tissues slaughtered in North West provinces of Iran by using FPT and ELISA. Urmia Medical Journal. 22(1): 18-24 [In Persian].
· Weiss, C., Conte, A., Milandri, C., Scortichini, G., Semprini, P., Usberti, R. and Migliorati, G.(2007). Veterinary drugs residue monitoring in Italian poultry: Current strategies and possible developments. Food Control, 18(9): 1068-1076.
_||_
· Alaboudi, A., Abu Basha, E. and Musallam, I. (2013). Chlortetracycline and sulfanilamide residues in table eggs: Prevalence, distribution between yolk and white and effect of refrigeration and heat treatment. Food Control, 33(1): 281-286.
· Alghamdi, M. S., Almustafa, Z. H., Elmorsy, F., Alfaky, A., Haider, I. and Essa, H. (2000). Residues of tetracycline compounds in poultry products in the eastern province of Saudi Arabia. Public Health, 114(4): 300-304.
· Almustafa, Z. H. andAlghamdi, M. S. (2000). Use of norfloxacin in poultry production in the eastern province of Saudi Arabia and its possible impact on public health. International Journal of Environmental Health Research, 10(4): 291-299.
· Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H. and Pittet, D. (2012). Ready for a world without antibiotics? The Pensieres Antibiotic Resistance Call to Action. Antimicrobial Resistance and Infection Control, 1(1): 11.
· Cheong, C. K., Hajeb, P., Jinap, S. and Ismail-Fitry, M. R. (2010). Sulfonamides determination in chicken meat products from Malaysia. International Food Research Journal, 17: 885-892.
· Dewdney, J. M., Maes, L., Raynaud, J. P., Blanc, F., Scheid, J. P., Jackson, T., Lens, S. and Verschueren, C. (1991). Risk assessment of antibiotic residues of beta-lactams and macrolides in food products with regard to their immuno-allergic potential. Food and Chemical Toxicology, 29(7): 477-83.
· Dey, B. P., Thaler, A. and Gwozdz, F. (2003). Analysis of microbiological screen test data for antimicrobial residues in food animals. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 38(3): 391-404.
· Donoghue, D. J. (2003). Antibiotic residues in poultry tissues and eggs: human health concerns? Poultry Science, 82(4): 618-621.
· Er, B., Onurdag, F. K., Demirhan, B., Ozgacar, S. O., Oktem, A. B. and Abbasoglu, U. (2013). Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poultry Science, 92(8): 2212-2215.
· European Commission 2010. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of the European Union, 53.
· Ezenduka, E. V., Oboegbulem, S. I., Nwanta, J. A. and Onunkwo, J. I. (2011). Prevalence of antimicrobial residues in raw table eggs from farms and retail outlets in Enugu State, Nigeria. Tropical Animal Health and Production, 43(3): 557-559.
· Gustafson, R. H. (1993). Historical perspectives on regulatory issues of antimicrobial resistance.Veterinary and Human Toxicology, 35(Suppl 1): 2-5.
· Hakimzadegan, M., Khalilzadeh Khosroshahi, M. and Hasseini Nasab, S. (2014). Monitoring of Antibiotic Residue in chicken eggs in Tabriz city by FPT. International Journal of Advanced Biological and Biomedical Research, 2(1): 132-140.
· Madadi, M., Bojmehrani, H. and Azari, M. 2014. Evaluation of drug interactions and prescription errors of poultry veterinarians in north of Iran. Poultry Science Journal, 2(1): 25-35.
· Moreno-Bondi, M. C., Marazuela, M. D., Herranz, S. and Rodriguez, E. (2009). An overview of sample preparation procedures for LC-MS multiclass antibiotic determination in environmental and food samples. Analytical and Bioanalytical Chemistry, 395(4): 921-946.
· Myllyniemi, A. L., Rannikko, R., Lindfors, E., Niemi, A. and Backman, C. (2000). Microbiological and chemical detection of incurred penicillin G, oxytetracycline, enrofloxacin and ciprofloxacin residues in bovine and porcine tissues. Food Additives and Contaminants, 17(12): 991-1000.
· Paige, J. C., Tollefson, L. and Miller, M. (1997). Public health impact on drug residues in animal tissues. Veterinary and Human Toxicology, 39(3): 162-169.
· Patterson, D. R. (1991). Quinolone toxicity: methods of assessment. The American Journal of Medicine, 91(6A): 35S-37S.
· Pena, A., Silva, L. J., Pereira, A., Meisel, L. and Lino, C. M. (2010). Determination of fluoroquinolone residues in poultry muscle in Portugal. Analytical and Bioanalytical Chemistry, 397(6): 2615-2621.
· Raison-Peyron, N., Messaad, D., Bousquet, J. and Demoly, P. (2001). Anaphylaxis to beef in penicillin-allergic patient. Allergy, 56(8): 796-797.
· Rao, G. S., Ramesh, S., Ahmad, A. H., Tripathi, H. C., Sharma, L. D. and Malik, J. K. (2001). Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intramuscular administration of enrofloxacin in goats. Veterinary Research Communications, 25(3): 197-204.
· Salama, N. A., Abou-Raya, S. H., Shalaby, A. R., Emam, W. H. and Mehaya, F. M. (2011). Incidence of tetracycline residues in chicken meat and liver retailed to consumers. Food Additives and Contaminants: Part B: Surveillance, 4(2): 88-93.
· Salehzadeh, A., Madadi, M., Salehzadeh, A., Rokni, N. and Golchinefar, F. (2006). Oxytetracycline Residue in Chicken Tissues from Tehran Slaughterhouses in Iran. Pakistan Journal of Nutrition, 5(4): 377-381.
· Salehzadeh, F., Salehzadeh, A., Rokni, N., Madani, R. and Golchinefar, F. (2007). Enrofloxacin Residue in Chicken Tissues from Tehran Slaughterhouses in Iran. Pakistan Journal of Nutrition, 6(4): 409-413.
· Samadpour, M., Stewart, J., Steingart, K., Addy, C., Louderback, J., Mcginn, M., Ellington, J. and Newman, T. (2002). Laboratory investigation of an E. coli O157:H7 outbreak associated with swimming in Battle Ground Lake, Vancouver, Washington. Journal of Environmental Health, 64(10): 16-20, 26, 25.
· Schwartz, H. J. and Sher, T. H. (1984). Anaphylaxis to penicillin in a frozen dinner. Annals of Allergy, 52(5): 342-3.
· Shahid, M. A., Siddique, M., Abubakar, M., Arshed, M. J., Asif, M. and Ahmad, M. (2007). Status of oxytetracycline residues in chicken meat in Rawalpindi/Islamabad area of Pakistan. Asian Journal of Poultry Science, 1, 8-15.
· Sundlof, S. F. (1994). Human Health Risks Associated with Drug Residues in Animal-Derived Foods. Journal of Agromedicine, 1(2): 5-20.
· Tajik, H, Razavi Rouhani, S., Pajohi Alamoti, M. and Mahmoudi R. (2011). Comparison of enrofloxacin residues in poultry tissues slaughtered in North West provinces of Iran by using FPT and ELISA. Urmia Medical Journal. 22(1): 18-24 [In Persian].
· Weiss, C., Conte, A., Milandri, C., Scortichini, G., Semprini, P., Usberti, R. and Migliorati, G.(2007). Veterinary drugs residue monitoring in Italian poultry: Current strategies and possible developments. Food Control, 18(9): 1068-1076.