Chloroplast genome analyses of two diploid species B. Oleracea and B. Rapa and two tetraploid species B. Napus and B. Juncea of the Cruciferae family (Brassicaceae) by bioinformatics techniques
Subject Areas : Developmental biology of plants and animals , development and differentiation in microorganisms
Farshid Talat
1
*
,
Ghader Ghasemi
2
1 -
2 - Seed and Plant Improvement Research Department, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran
Keywords: Bioinformatic, Brassica, Brassicaceae, Chloroplast, DNA,
Abstract :
Nowadays, the popularity of the genus Brassica is increasing due to its nutritional value and medicinal effects. This group includes a large number of vegetable foods such as cabbage, broccoli, cauliflower, mustard and rapeseed oil. In this study, the complete chloroplast DNA genome of two diploid species of the oleracea family, B. oleracea (C, n=9) and B. rapa (A, n=10) with two allotetraploid species B. napus (AC, n=19) and B. juncea (AB, n=18) was studied and evaluated. The results showed that among the selected species, B. napus has the shortest nucleotide length with 152860 bp, and two species B. rapa and B. juncea each have the same length with 153483 bp, and the length of the nucleotide sequence in B. oleracea species It is equal to 153364 bp. In the analysis of the coding regions of all four genomes, it was found that the species B. napus with 79715 bp in the CDS region has the shortest sequence length, and the two species B. rapa and B. juncea each with 80463 bp in the CDS region have the same length. B. oleracea, showed the length of this region equal to 80559 bp. Intronic non-coding regions in B. rapa species with the longest length (30197 bp) which is only two bp different from B. juncea (30195 bp). The length of this region in B. oleracea is equal to 30178 bp and B. napus has the shortest length with 298660 bp.
[1] Gray, M W. Organellar evolution michael w. Gray and david f. Spencer. Evolution of microbial life, 1996; 54: 109.
[2] Majd A, Shariatzadeh M A. Cell and molecular biology, Ayge Publications, 2013; 18th edition.
[3] Talat F, Wang K. Chloroplast genome study, new tool in plant biotechnology; Gossypium Spp. As a model crop. J. Curr. Res. Sci. 2014; 2:838.
[4] Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, Choi DW, Liu JR Cho KY. Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant cell reports, 2006; 25:334-340.
[5] Ribeiro MM, LeProvost G, Gerber S, Vendramin GG, Anzidei M, Decroocq S, Marpeau A, Mariette S, Plomion C. Origin identification of maritime pine stands in France using chloroplast simple-sequence repeats. Annals of Forest Science. 2002;59(1):53-62.
[6] Yang X, Wang Y, Gong W, Li Y. Comparative Analysis of the Codon Usage Pattern in the Chloroplast Genomes of Gnetales Species. International Journal of Molecular Sciences. 2024; 25(19):10622. https://doi.org/10.3390/ijms251910622
[7] Kim E H, Li X P, Razeghifard R, Anderson J M, Niyogi K K, Pogson B J, Chow W S. The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: a study using two chlorophyll b-less mutants. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2009; 1787(8): 973-984.
[8] Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, Zhao D, Al-Mssallem IS, Yu J. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PloS one. 2010; 5(9):e12762.
[9] Wilson CA. Phylogeny of Iris based on chloroplast matK gene and trnK intron sequence data. Molecular Phylogenetics and Evolution. 2004; 33(2):402-12.
[10] Ohsako T, Ohnishi O. Nucleotide sequence variation of the chloroplast trnK/matK region in two wild Fagopyrum (polygenaceae) species, F. leptopodum and F. statice. Genes & genetic systems. 2001; 76(1):39-46.
[11] Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. The Plant Cell. 2001; 13(3):645-58.
[12] Sands JF, Cummings HS, Sacerdot C, Dondon L, Grunberg-Manago M, Hershey JW. Cloning and mapping of infA, the gene for protein synthesis initiation factor IFI. Nucleic acids research, 1987; 15(13):5157-5168.
[13] Daniell H, Wurdack KG, Kanagaraj A, Lee SB, Saski C, Jansen RK. The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor Appl Genet. 2008; 116(5):723-737.
[14] Samson N, Bausher MG, Lee SB, Jansen RK, Daniell H. The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. Plant Biotechnology Journal. 2007; 5(2):339-53.
[15] Hirao T, Watanabe A, Kurita M, Kondo T, Takata K. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC plant biology, 2008; 8:1-20.
[16] Talat F,Gheibi M. Bioinformatics analysis of the chloroplast genome of G.stocksii and G.longicalyx diploid species and comparing them with tetraploid species. Developmental Biology,2023;1(15):37-48. http://doi.org/10.30495/jdb.2023.1959300.1305.
[17] Gao L, Yi X, Yang YX, Su YJ, Wang T. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol Biol, 2009; 9:130.
[18] Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA research. 2004;11(4):247-61.
[19] Zavala B, Dineen L, Fisher KJ, Opulente DA, Harrison MC, Wolters JF, Shen XX, Zhou X, Groenewald M, Hittinger CT, Rokas A. Genomic factors shaping codon usage across the Saccharomycotina subphylum. G3: Genes, Genomes, Genetics. 2024: jkae207. https://doi.org/10.1093/g3journal/jkae207
[20] Yu Z. Codon usage bias analysis of 22 Anemone. Highlights in Science, Engineering and Technology. 2024; 102:328-37. https://doi.org/10.54097/04rwse67
[21] Coghlan A, Wolfe KH. Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast, 2000; 16(12): 1131-1145.
[22] Wu FH, Kan DP, Lee SB, Daniell H, Lee YW, Lin CC, Lin NS, Lin CS. Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. Tree Physiology. 2009; 29(6):847-56.
[23] Mardanova ES, Zamchuk LA, Skulachev MV, Ravin NV. The 5′ untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene. 2008; 420(1):11-6.
[24] Davis N, Biddlecom N. On the relationship between GC content and the number of predicted microRNA binding sites by MicroInspector. Comput Biol Chem. 2008; 32(3): 222-6.
[25] Zhang B, Pan X, Anderson TA. MicroRNA: a new player in stem cells. Journal of cellular physiology. 2006; 209(2):266-9.
[26] Wang D, Yang B. Analysis of codon usage bias of thioredoxin in apicomplexan protozoa. Parasites & Vectors. 2023; 16(1):431. https://doi.org/10.1186/s13071-023-06002-w
[27] Smith G. (2009). Democratic Innovations: Designing Institutions for Citizen Participation. Cambridge University.
[28] Paterson A, Lan TH, Wendel J, Reischmann K, Chang C, Lin YR, Liu SC, Burow M, Kowalski S, Katsar C and DelMonte T., 1996. Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence.
[29] Chen X, Zhao Y, Xu S, Zhou Y, Zhang L, Qu B, Xu Y. Analysis of Codon Usage Bias in the Plastid Genome of Diplandrorchis sinica (Orchidaceae). Current Issues in Molecular Biology. 2024; 46(9):9807-20. https://doi.org/10.3390/cimb46090582
[30] Fang J, Hu Y, Hu Z. Comparative analysis of codon usage patterns in 16 chloroplast genomes of suborder Halimedineae. BMC genomics. 2024; 25(1):945. https://doi.org/10.1186/s12864-024-10825-x
[31] Khrustalev V V, Barkovsky E V. Mutational pressure is a cause of inter-and intragenomic differences in GC-content of simplex and varicello viruses. Computational Biology and Chemistry, 2009; 33(4): 295-302.