Investigating the effect of storing sesame seeds at refrigerator temperature and ambient temperature on phytochemical compounds and nutritional value of sesame seeds
Subject Areas : Developmental biology of plants and animals , development and differentiation in microorganismsNegin Abdiani 1 , Mohammad javaheriyan 2 , Maryam Kolahi 3 * , Mohammad Sabaeian 4
1 - Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 - 1. Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 -
4 - Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Keywords: Antioxidant, Fatty acid, Sesame, Storage.,
Abstract :
Sesame is considered one of the most crucial oil seeds globally, containing a high level of unsaturated fatty acids, protein, and minerals. The storage conditions influence sesame seeds' nutritional value during storage, which impact metabolic pathways in the seeds. This study examined how storing sesame seeds at room temperature or in the refrigerator affects the phytochemical compounds in the seeds. The study examined the levels of phenolic compounds, antioxidant capacity, oil content, fatty acid composition, carbohydrates, proteins, and proline in the ethanol extract and sesame oil. This study's findings indicated the level of phenolic compounds in sesame seeds stored at room temperature rose, but storing sesame seeds in the fridge led to a decline in phenolic content. The antioxidant capacity of sesame seeds was reduced by both storage conditions. There was no significant difference in the level of sesame oil in the samples studied compared to the control sample. Storing sesame seeds in the refrigerator led to an 18% rise in oleic acid in comparison to linoleic acid, while at room temperature linoleic acid increased by 2.4% compared to oleic acid to support cell membrane maintenance. Sesame seeds showed an increase in carbohydrate and proline levels when stored in refrigeration, possibly because of their osmotic protection function. Final statement: The analysis of the current research findings reveals that storing sesame seeds at room temperature leads to an elevation in the levels of linoleic acid (omega-6) and phenolic compounds, thus enhancing the overall quality and nutritional benefits of sesame seeds.
Aglave. H.R. (2018). Physiochemical characteristics of sesame seeds. J Med Plants Stud, 6(1), 64–66.
Ahmed. I. A. M.. AlJuhaimi. F.. Özcan, M. M.. Ghafoor. K.. Şimşek. Ş.. Babiker, E. E., Osman, M. A., Gassem, M. A.. & Salih. H. A. (2020). Evaluation of chemical properties, amino acid contents and fatty acid compositions of sesame seed provided from different locations. Journal of Oleo Science, 69(8), 795–800. https://doi.org/10.5650/jos.ess20041
Amjad. A.. Javed. M. S.. Hameed. A.. Hussain. M.. & Ismail. A. (2019). Changes in sugar contents and invertase activity during low temperature storage of various chipping potato cultivars. Food Science and Technology, 40, 340–345. https://doi.org/10.1590/fst.00219
Ashraf. M.. & Tufail. M. (1995). Variation in Salinity Tolerance in Sunflower (Helianthus annum L.). Journal of Agronomy and Crop Science, 174(5), 351–362. https://doi.org/10.1111/j.1439-037X.1995.tb01122.x
Attri. P.. Ishikawa. K.. Okumura. T.. Koga. K.. Shiratani. M.. & Mildaziene. V. (2021). Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Scientific Reports, 11(1). 2539. https://doi.org/10.1038/s41598-021-81175-x
Beauchamp. C.. & Fridovich. I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry. 44(1). 276–287. https://doi.org/10.1016/0003-2697(71)90370-8
Brkić Bubola. K.. Lukić. M.. Novoselić. A.. Krapac. M.. & Lukić. I. (2020). Olive fruit refrigeration during prolonged storage preserves the quality of virgin olive oil extracted therefrom. Foods. 9(10). 1445–1460. https://doi.org/10.3390/foods9101445
Cakmak. T.. Atici. O.. Agar. G.. & Sunar. S. (2010). Natural aging-related biochemical changes in alfalfa (Medicago sativa L.) seeds stored for 42 years. International Research Journal of Plant Science. 1(1). 1–6.
Cornah. J. E.. & Smith. S. M. (2002). Synthesis and Function of Glyoxylate Cycle Enzymes. In A. Baker & I. A. Graham (Eds.). Plant Peroxisomes (pp. 57–101). Springer Netherlands. https://doi.org/10.1007/978-94-015-9858-3_3
de Magalhães. B. E. A.. de Andrade Santana. D.. de Jesus Silva. I. M.. Minho. L. A. C.. Gomes, M. A.. da Silva Almeida. J. R. G.. & dos Santos. W. N. L. (2020). Determination of phenolic composition of oilseed whole flours by HPLC-DAD with evaluation using chemometric analyses. Microchemical Journal, 155. 104683–104699. https://doi.org/10.1016/j.microc.2020.104683
Ebone. L. A.. Caverzan. A.. & Chavarria. G. (2019). Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiology and Biochemistry. 145. 34–42.
Ghosh. M.. Upadhyay. R.. Mahato, D. K.. & Mishra. H. N. (2019). Kinetics of lipid oxidation in omega fatty acids rich blends of sunflower and sesame oils using Rancimat. Food Chemistry. 272. 471–477. https://doi.org/10.1016/j.foodchem.2018.08.072
Haddadkhodaparast. M. H.. Habibi Najafi. M. B.. Elhami Rad. A. H.. & Diwandari, N. (2006). Process optimization of sesame milk according to Iranian prefrences. Iran Journal of Food Science and Industry Research. 2(1). https://doi.org/10.22067/ifstrj.v2i1.222
Hernández. M. L.. Sicardo, M. D.. & Martínez-Rivas. J. M. (2019). Transcriptional Regulation of Stearoyl-Acyl Carrier Protein Desaturase Genes in Response to Abiotic Stresses Leads to Changes in the Unsaturated Fatty Acids Composition of Olive Mesocarp. Frontiers in Plant Science. 10. 251–263. https://doi.org/10.3389/fpls.2019.00251
Kadavala. J. B.. Patel. M. B.. Parmar. P. K.. & Patil. K. (2023). Seed ageing physiological, biochemical and molecular basis: A review. TPI. 12. 1511–1517.
Keharom. S.. Mahachai. R.. & Chanthai. S. (2016). The optimization study of α-amylase activity based on central composite design-response surface methodology by dinitrosalicylic acid method. International Food Research Journal. 23(1). 10–17.
Keshavarzian. M.. Gerivani. Z.. Sadeghipour. H. R.. Aghdasi. M.. & Azimmohseni. M. (2013). Suppression of mitochondrial dehydrogenases accompanying post-glyoxylate cycle activation of gluconeogenesis and reduced lipid peroxidation events during dormancy breakage of walnut kernels by moist chilling. Scientia Horticulturae, 161. 314–323. https://doi.org/10.1016/j.scienta.2013.07.026
Khan. I. U.. Rathore. B. S.. & Syed. Z. (2019). Evaluation of polyphenols, flavonoids and antioxidant activity in different solvent extracts of sesame (Sesamum indicum L.) genotypes. Int. J Seed Spices. 9. 52–60.
Kurt. C. (2018). Variation in oil content and fatty acid composition of sesame accessions from different origins. Grasas y Aceites. 69(1). 241–251. https://doi.org/10.3989/gya.0997171
Lin. X.. Zhou. L.. Li. T.. Brennan. C.. Fu. X.. & Liu. R. H. (2017). Phenolic content, antioxidant and antiproliferative activities of six varieties of white sesame seeds (Sesamum indicum L.). Rsc Advances. 7(10). 5751–5758.
Lin. Y.-S.. Huang. W.-Y.. Ho. P.-Y.. Hu. S.-Y.. Lin. Y.-Y.. Chen. C.-Y.. Chang. M.-Y.. & Huang. S.-L. (2020). Effects of Storage Time and Temperature on Antioxidants in Juice from Momordica charantia L. and Momordica charantia L. var. Abbreviata Ser. Molecules. 25. 3614. https://doi.org/10.3390/molecules25163614
Önder. S.. Tonguç. M.. Güvercin. D.. & Karakurt. Y. (2020). Biochemical changes stimulated by accelerated aging in safflower seeds (Carthamus tinctorius L.). Journal of Seed Science. 42. e202042015-202042027. https://doi.org/10.1590/2317-1545v42227873
Ortega-Ortega. M. D. L. A.. Cruz-Cansino. N. D. S.. Alanís-García. E.. Delgado-Olivares. L.. Ariza-Ortega. J. A.. Ramírez-Moreno, E.. & Manríquez-Torres. J. D. J. (2017). Optimization of Ultrasound Extraction of Cactus Pear (Opuntia ficus indica) Seed Oil Based on Antioxidant Activity and Evaluation of Its Antimicrobial Activity. Journal of Food Quality. 2017. 1–9. https://doi.org/10.1155/2017/9315360
Panobianco. M.. & Vieira. R. D. (2007). Eletrical conductivity and deterioration of soybean seeds exposed to different storage conditions. Revista Brasileira de Sementes, 29. 97–105. https://doi.org/10.1590/S0101-31222007000200013
Paravar. A.. Maleki Farahani. S.. Adetunji. A. E.. Oveisi, M.. & Piri. R. (2023). Effects of seed moisture content, temperature, and storage period on various physiological and biochemical parameters of Lallemantia iberica Fisch. & C.A.Mey. Acta Physiologiae Plantarum. 45(9). 105–113. https://doi.org/10.1007/s11738-023-03581-0
Parsaeian. M.. Shahabi. M.. & Hassanpour. H. (2020). The integration of image processing and artificial neural network to estimate four fatty acid contents of sesame oil. LWT. 129. 109476. https://doi.org/10.1016/j.lwt.2020.109476
Quero-Jiménez. P. C.. Montenegro. O. N.. Sosa. R.. Pérez. D. L.. Rodríguez. A. S.. Méndez. R. R.. Alonso. A. C.. Corrales. A. J.. de la Torre. J. B.. & Acosta. J. V. (2019). Total carbohydrates concentration evaluation in products of microbial origin. Afinidad. 76(587). 195–203.
Rizvani Moghadam. P.. & Seyyedi. S. M. (2017). Investigating the germination characteristics of sesame seeds (Sesamum indicum L.) and its relationship with the composition of fatty acids. Iran Seed Science and Technology. 5(2). 119–121.
Sgherri. C. L. M.. Loggini. B.. Puliga. S.. & Puliga. F. (1994). Antioxidant system in Sporobolus stapfianus: Changes in response to desiccation and rehydration. Phytochemistry. 35(3). 561–565. https://doi.org/10.1016/S0031-9422(00)90561-2
Tanaka. T.. Abo. Y.. Hamano. S.. Fujishima, Y.. & Kaneo. Y. (2013). Intracellular disposition of arabinogalactan and asialofetuin in HepG2 cells. Journal of Drug Delivery Science and Technology. 23(5). 435–438.
Tatić. M.. Balešević-Tubić. S.. \DJor\djević, V.. Nikolić. Z.. \DJukić, V.. Vujaković. M.. & Cvijanovic. G. (2012). Soybean seed viability and changes of fatty acids content as affected by seed aging. African Journal of Biotechnology. 11(45). 10310–10316.
Thakur. M.. & Sharma. A. D. (2005). Salt-stress-induced proline accumulation in germinating embryos: Evidence suggesting a role of proline in seed germination. Journal of Arid Environments. 62(3). 517–523. https://doi.org/10.1016/j.jaridenv.2005.01.005
Wolosiak. R.. Drużyńska. B.. Derewiaka, D.. Piecyk. M.. Majewsk.. E.. Ciecierska. M.. Worobiej. E.. & Pakosz. P. (2021). Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays—A practical approach. Molecules. 27(1). 50–70. https://doi.org/10.3390/molecules27010050
Yuan. X.. Liu. J.. Zeng. G.. Shi. J.. Tong. J.. & Huang. G. (2008). Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renewable Energy. 33(7). 1678–1684. https://doi.org/10.1016/j.renene.2007.09.007
YUSEFI. T. E.. Fallah. S.. & Taddayon. A. (2015). Effect of seed priming on some effective physiological parameters on seed germination of pea (Pisum sativum L.) under chilling stress. https://www.sid.ir/paper/234309/en