Using Ant Colony Algorithm and Pairwise Learning to Classify Attack in Intrusion Detection Systems
Subject Areas : Electronics EngineeringMohammad Ali Nadoomi 1 , Majid Sina 2
1 - Computer engineering,Advanced Studies ,Islamic Azad university,Boushehr, Iran
2 - Islamic Azad university, Boushehr
Keywords:
Abstract :
Intrusion detection systems for security in computer networks have been proposed to be crossed if the attacker from other security equipment, able to detect it and prevent it from advancing. One of the challenges of these systems, it is high dimensional data. In this study was to reduce the dimensions of a simple genetic algorithm with the length of the string variable we use. Then, according to selected characteristics, a meta-heuristic model for data classification, using ant colony algorithm offer. Classification model proposed by trying to divide the data into two samples is Hnjydh and Nahnjydh. The proposed method for evaluating the performance of database intrusion detection NSL-KDD than other data from the records of more realistic approach is used. The results of the experiments, the proposed method has better performance compared with other existing methods show.
(1) Debar, H. (2000). An introduction to intrusion-detection systems. Proceedings of Connect, 2000.
(2) Mukherjee, B., Heberlein, L. T., & Levitt, K. N. (1994). Network intrusion detection. IEEE network, 8(3), 26-41.
(3) Raghunath, B. R., & Mahadeo, S. N. (2008, July). Network intrusion detection system (NIDS). In Emerging Trends in Engineering and Technology, 2008. ICETET'08. First International Conference on (pp. 1272-1277). IEEE.
(4) Mazzariello, C., Bifulco, R., & Canonico, R. (2010, August). Integrating a network ids into an open source cloud computing environment. In Information Assurance and Security (IAS), 2010 Sixth International Conference on (pp. 265-270). IEEE.
(5) Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013). A survey of intrusion detection techniques in cloud. Journal of Network and Computer Applications, 36(1), 42-57.
(6) Goyal, Anup, and Chetan Kumar, (2008). GA-NIDS: a genetic algorithm based network intrusion detection system. Northwestern university, 178(15), 3024–3042
(7) Muda, Z., Yassin, W., Sulaiman, M. N., & Udzir, N. I. (2011, July). Intrusion detection based on K-Means clustering and Naïve Bayes classification. In Information Technology in Asia (CITA 11), 2011 7th International Conference on (pp. 1-6). IEEE.
(8) Saha, S., Sairam, A. S., Yadav, A., & Ekbal, A. (2012, August). Genetic algorithm combined with support vector machine for building an intrusion detection system. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics (pp. 566-572). ACM.
(9) Chae, Hee-su, Byung-oh Jo, Sang-Hyun Choi, and Twaekyung Park, (2015). Feature Selection for Intrusion Detection using NSL-KDD. Recent Advances in Computer Science, ISBN : 978-960.
(10) Benaicha, S. E., Saoudi, L., Guermeche, S. E. B., & Lounis, O. (2014, August). Intrusion detection system using genetic algorithm. In Science and Information Conference (SAI), 2014 (pp. 564-568). IEEE.
(11) Aghdam, Mehdi Hosseinzadeh, and Peyman Kabiri, (2016). Feature selection for intrusion detection system using ant colony optimization. International Journal of Network Security 18.3 : 420-432.
(12) Mubarak, Shaik Liyakhat, (2016). Intrusion Detection System using SVM, SOM & NN.
(13) Kevric, J., Jukic, S., & Subasi, A. (2016). An effective combining classifier approach using tree algorithms for network intrusion detection. Neural Computing and Applications, 1-8.
(14) Chen, M. H., Chang, P. C., & Wu, J. L. (2016). A population-based incremental learning approach with artificial immune system for network intrusion detection. Engineering Applications of Artificial Intelligence, 51, 171-181.
(15) Varma, P. R. K., Kumari, V. V., & Kumar, S. S. (2016). Feature Selection Using Relative Fuzzy Entropy and Ant Colony Optimization Applied to Real-time Intrusion Detection System. Procedia Computer Science, 85, 503-510.
(16) Rawat, A., & Choubey, A. (2016). Ant Colony Optimization for Intrusion Detection System Based on KNN and KNN-DS with detection of U2R, R2L attack for Network Probe Attack Detection.
(17) Warsi, Sana, Yogesh Rai, and Santosh Kushwaha. “Selective Iteration based Particle Swarm Optimization (SIPSO) for Intrusion Detection System.” International Journal of Computer Applications 124.17 (2015).
(18) Salah Eddine, Benaicha, et al. "Intrusion detection system using genetic algorithm." Science and Information Conference (SAI), 2014. IEEE, 2014.
(19) خدایار, محمد؛ علیرضا عصاره و منصور امینی لاری، ۱۳۹۳، بکارگیری الگوریتم های ترکیبی یادگیری ماشین در بهبود سیستم های تشخیص نفوذ، همایش ملی مهندسی رایانه و مدیریت فناوری اطلاعات، تهران، شرکت علم و صنعت طلوع فرزین.
(20) Mehmod, T., & Rais, H. B. M. (2016). Ant Colony Optimization and Feature Selection for Intrusion Detection. In Advances in Machine Learning and Signal Processing (pp. 305-312). Springer International Publishing.
(21) Galletly, J. E. (1992). An overview of genetic algorithms. Kybernetes, 21(6), 26-30.
(22) Maniezzo, V., & Carbonaro, A. (2002). Ant colony optimization: an overview. In Essays and surveys in metaheuristics (pp. 469-492). Springer US.
(23) Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-674.
(24) Dorigo, M. (1991). Ant Colony Optimization—new optimization techniques in engineering. Springer-Verlag, Berlin Heidelberg, 101-117.
(25) Nsl-kdd data set for network based intrusion detection systems. Available on: http://nsl.cs.unb.ca/KDD/NSL-KDD.html, March 2009.
(26) Bates, D. W., Goldman, L., & Lee, T. H. (1991). Contaminant blood cultures and resource utilization: the true consequences of false-positive results. JAMA, 265(3), 365-369.
(27) Elhag, S., Fernández, A., Bawakid, A., Alshomrani, S., & Herrera, F. (2015). On the combination of genetic fuzzy systems and pairwise learning for improving detection rates on Intrusion Detection Systems. Expert Systems with Applications, 42(1), 193-202.
_||_