Handoff Optimization for Joint Base Station Association and Power Control with Proportional Fairness in NOMA Small-Cell Networks
Subject Areas : Telecommunications EngineeringSina Pirnia 1 , Hamidreza Bakhshi 2 , Mohamad Dosaranian-Moghadam 3 , Ramin Khosravi 4
1 - Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Department of Electrical Engineering,
Shahed University, Tehran, Iran
3 - Department of Electrical Engineering, Qazvin
Branch, Islamic Azad University, Qazvin,
Iran
4 - Department of Electrical Engineering, Qazvin
Branch, Islamic Azad University, Qazvin,
Iran
Keywords: Base station association, Power Control, Handoff, Small cell networks, Proportional Fairness,
Abstract :
The handoff rate and load balancing are two important issues that have a great impact on the spectrum and energy efficiency in the small cell networks. This paper investigates the handoff optimization in small cell networks with power-domain non-orthogonal multiple access that uses successive interference cancellation, considering the fairness among base stations. We study the joint base station association and power control problem by considering the motion of mobile users and load balancing in the small cell networks. Under the maximum allowable transmit power and minimum average-rate constraints, two optimization problems are formulated using the number of associated mobile users, the number of handoffs, and the transmit power of all MUs. The total power consumption minimization and the system-wide and handoff utility maximization problems are combined into a single-stage optimization problem through the weighted sum method. We solve the formulated problem using a game theory-based algorithm and primal decomposition theory. The simulation results show that our proposed algorithm can significantly reduce the frequent handoffs and bring a fair power-controlled BS association in small cell networks.
[1] L. P. Qian, Y. Wu, H. Zhou, and X. Shen, “Joint Uplink Base Station Association and Power Control for Small-Cell Networks with Non-Orthogonal Multiple Access,” IEEE Trans. Wirel. Commun., vol. 16, no. 9, pp. 5567–5582, 2017, doi: 10.1109/TWC.2017.2664832.
[2] A. Ullah, Z. Haq Abbas, F. Muhammad, G. Abbas, and L. Jiao, “Capacity driven small cell deployment in heterogeneous cellular networks: Outage probability and rate coverage analysis,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 6, p. e3876, 2020, doi: 10.1002/ett.3876.
[3] A. Ghosh, I. Saha Misra, and A. Kundu, “Coverage and rate analysis in two-tier heterogeneous networks under suburban and urban scenarios,” Trans. Emerg. Telecommun. Technol., vol. 30, no. 12, pp. 1–16, 2019, doi: 10.1002/ett.3648.
[4] J. Yang, B. Yang, S. Chen, Y. Zhang, Y. Zhang, and L. Hanzo, “Dynamic resource allocation for streaming scalable videos in SDN-aided dense small-cell networks,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2114–2129, 2018, doi: 10.1109/TCOMM.2018.2883627.
[5] P. Paglierani et al., “Techno‐economic analysis of 5G immersive media services in cloud‐enabled small cell networks: The neutral host business model: Providing techno‐economic guidelines for the successful provision of 5G innovative services in small cell networks,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 2, p. e3746, 2020, doi: 10.1002/ett.3746.
[6] K. M. Addali, S. Y. B. Melhem, Y. Khamayseh, Z. Zhang, and M. Kadoch, “Dynamic mobility load balancing for 5G small-cell networks based on utility functions,” IEEE Access, vol. 7, pp. 126998–127011, 2019, doi: 10.1109/ACCESS.2019.2939936.
[7] M. Shafiei-Kordshouli, Z. Zeinalpour-Yazdi, and R. Ramezanian, “Coverage improvement in femtocell networks via efficient utility pricing,” IET Commun., vol. 10, no. 16, pp. 2215–2221, 2016, doi: 10.1049/iet-com.2015.1047.
[8] S. Pirnia, H. Bakhshi, M. Dosaranian‐Moghadam, and R. Khosravi, “Handoff optimization for joint base station association and power control in uplink non‐orthogonal multiple access small cell networks,” Trans. Emerg. Telecommun. Technol., p. e4465, doi: 10.1002/ett.4465.
[9] A. Memarinejad, M. Mohammadi, and M. B. Tavakoli, “Outage Performance Analysis of Multi-Antenna Full-Duplex NOMA Cellular Systems,” J. Commun. Eng., vol. 12, no. 45, pp. 1–18, 2022, doi: 10.30495/jce.2022.692365.
[10] L. P. Qian, Y. J. A. Zhang, Y. Wu, and J. Chen, “Joint base station association and power control via Benders’ decomposition,” IEEE Trans. Wirel. Commun., vol. 12, no. 4, pp. 1651–1665, 2013, doi: 10.1109/TWC.2017.2664832
[11] N. Reisi, “Millimeter-Wave Underlay D2D Communications: Channel Assignment, Transmission mode Selection and Power Control for Full-CSI and Limited-CSI Scenarios,” J. Commun. Eng., vol. 12, no. 46, 2022, doi: 10.30495/jce.2022.1962935.1166.
[12] H. Ding, F. Zhao, J. Tian, and H. Zhang, “Fairness-Driven Energy Efficient Resource Allocation in Uplink MIMO Enabled HetNets,” IEEE Access, vol. 8, pp. 37229–37241, 2020, doi: 10.1109/ACCESS.2020.2975301.
[13] A. Dehghani Firouzabadi and A. M. Rabiei, “Joint user association, subchannel assignment, and power allocation in full‐duplex OFDMA heterogeneous networks,” Trans. Emerg. Telecommun. Technol., vol. 29, no. 12, p. e3548, 2018, doi: 10.1002/ett.3548.
[14] T. Zhou et al., “Joint Device Association and Power Coordination for H2H and IoT Communications in Massive MIMO Enabled HCNs,” IEEE Access, vol. 8, pp. 72971–72984, 2020, doi: 10.1109/ACCESS.2020.2988042.
[15] H. D. Balbi, D. Passos, R. C. Carrano, L. C. S. Magalhães, and C. V. N. Albuquerque, “Association stability and handoff latency tradeoff in dense IEEE 802.11 networks: A case study,” Comput. Commun., 2020, doi: 10.1016/j.comcom.2020.04.059.
[16] M. Ahmadi, S. ali Alaviyan, and A. Malahzadeh, “Investigation of cost reduction of mobility management in cellular networks using user movement model,” J. Commun. Eng., vol. 6, no. 23, 2017, [Online]. Available: https://jce.bushehr.iau.ir/article_682014.html.
[17] A. S. Cacciapuoti, “Mobility-aware user association for 5G mmWave networks,” IEEE Access, vol. 5, pp. 21497–21507, 2017, doi: 10.1109/ACCESS.2017.2751422.
[18] B. Zhang, W. Qi, and J. Zhang, “An energy efficiency and ping-pong handover ratio optimization in two-tier heterogeneous networks,” IEEE 8th Annu. Comput. Commun. Work. Conf. CCWC, vol. 2018-Janua, pp. 532–536, 2018, doi: 10.1109/CCWC.2018.8301767.
[19] Z. Mlika, E. Driouch, and W. Ajib, “Energy-efficient base station operation and association in HetNets: Complexity and algorithms,” IEEE Trans. Wirel. Commun., vol. 17, no. 4, pp. 2690–2702, 2018, doi: 10.1109/TWC.2018.2800754.
[20] J. An, Y. Zhang, X. Gao, and K. Yang, “Energy-efficient base station association and beamforming for multi-cell multiuser systems,” IEEE Trans. Wirel. Commun., vol. 19, no. 4, pp. 2841–2854, 2020, doi: 10.1109/TCOMM.2020.3008699.
[21] R. Sun, M. Hong, and Z.-Q. Luo, “Joint downlink base station association and power control for max-min fairness: Computation and complexity,” IEEE J. Sel. Areas Commun., vol. 33, no. 6, pp. 1040–1054, 2015, doi: 10.1109/JSAC.2015.2416982.
[22] L. A. Fletscher, J. M. Maestre, and C. Valencia Peroni, “An assessment of different user–BS association policies for green HetNets in off‐grid environments,” Trans. Emerg. Telecommun. Technol., vol. 28, no. 12, p. e3227, 2017, doi: 10.1002/ett.3227.
[23] J.-H. Kim, W.-S. Lee, and H.-K. Song, “Performance Enhancement Using Receive Diversity With Power Adaptation in the NOMA System,” IEEE Access, vol. 7, pp. 102867–102875, 2019, doi: 10.1109/ACCESS.2019.2930990.
[24] S. Zhang, N. Zhang, G. Kang, and Z. Liu, “Energy and spectrum efficient power allocation with NOMA in downlink HetNets,” Phys. Commun., vol. 31, pp. 121–132, 2018, doi: 10.1016/j.phycom.2018.09.006.
[25] A. Nasser, O. Muta, H. Gacanin, and M. Elsabrouty, “Non-Cooperative Game Based Power Allocation for Energy and Spectrum Efficient Downlink NOMA HetNets,” IEEE Access, vol. 9, pp. 136334–136345, 2021, doi: 10.1109/ACCESS.2021.3116706.
[26] K. Long, W. Li, M. Jiang, and J. Lu, “Non-cooperative game-based power allocation for energy-efficient NOMA heterogeneous network,” IEEE Access, vol. 8, pp. 49596–49609, 2020, doi: 10.1109/ACCESS.2020.2980191.
[27] Z. J. Ali, N. K. Noordin, A. Sali, and F. Hashim, “Fair energy-efficient resource allocation for downlink NOMA heterogeneous networks,” IEEE Access, vol. 8, pp. 200129–200145, 2020, doi: 10.1109/ACCESS.2020.3035212.
[28] S. K. Goudos, “Joint power allocation and user association in non-orthogonal multiple access networks: An evolutionary approach,” Phys. Commun., vol. 37, p. 100841, 2019, doi: 10.1016/j.phycom.2019.100841.
[29] M. M. Hasan, S. Kwon, and S. Oh, “Frequent-handover mitigation in ultra-dense heterogeneous networks,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 1035–1040, 2018, doi: 10.1109/TVT.2018.2874692.
[30] H. Kalbkhani, S. Jafarpour-Alamdari, M. G. Shayesteh, and V. Solouk, “QoS-based multi-criteria handoff algorithm for femto-macro cellular networks,” Wirel. Pers. Commun., vol. 98, no. 1, pp. 1435–1460, 2018, doi: 10.1007/s11277-017-4925-5.
[31] R. Arshad, H. ElSawy, S. Sorour, T. Y. Al-Naffouri, and M.-S. Alouini, “Velocity-aware handover management in two-tier cellular networks,” IEEE Trans. Wirel. Commun., vol. 16, no. 3, pp. 1851–1867, 2017, doi: 10.1109/TWC.2017.2655517.
[32] Z. Cheng et al., “Joint User Association and Resource Allocation in HetNets Based on User Mobility Prediction,” Comput. Networks, p. 107312, 2020, doi: 10.1016/j.comnet.2020.107312.
[33] M. Alhabo, L. Zhang, N. Nawaz, and H. Al-Kashoash, “Game theoretic handover optimisation for dense small cells heterogeneous networks,” IET Commun., vol. 13, no. 15, pp. 2395–2402, 2019, doi: 10.1049/iet-com.2019.0383.
[34] M. Alhabo and L. Zhang, “Load-dependent handover margin for throughput enhancement and load balancing in HetNets,” IEEE Access, vol. 6, pp. 67718–67731, 2018, doi: 10.1109/ACCESS.2018.2878489.
[35] S. Riyazuddien, D. Venkata Rao, and M. Ramarakula, “Load balancing by diversified quality factors‐based handoff (DQFH) in wireless cellular networks,” Int. J. Commun. Syst., vol. 34, no. 6, p. e4393, 2021, doi: 10.1002/dac.4393.
[36] S. Lin, N. Che, F. Yu, and S. Jiang, “Fairness and load balancing in SDWN using handoff-delay-based association control and load monitoring,” IEEE Access, vol. 7, pp. 136934–136950, 2019, doi: 10.1109/ACCESS.2019.2942717.
[37] R. Vogt, I. Nikolaidis, and P. Gburzynski, “A realistic outdoor urban pedestrian mobility model,” Simul. Model. Pract. Theory, vol. 26, no. 2012, pp. 113–134, 2012, doi: 10.1016/j.simpat.2012.04.006.
[38] R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Struct. Multidiscip. Optim., vol. 41, no. 6, pp. 853–862, 2010, doi: 10.1007/s00158-009-0460-7.
[39] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar, “Coalitional game theory for communication networks,” IEEE Signal Process. Mag., vol. 26, no. 5, pp. 77–97, 2009, doi: 10.1109/MSP.2009.000000.
[40] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 1439–1451, 2006, doi: 10.1109/JSAC.2006.879350.
[41] V. Granville, M. Krivánek, and J.-P. Rasson, “Simulated annealing: A proof of convergence,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 6, pp. 652–656, 1994, doi: 10.1109/34.295910.
[42] K. Wang, Y. Liu, Z. Ding, A. Nallanathan, and M. Peng, “User association and power allocation for multi-cell non-orthogonal multiple access networks,” IEEE Trans. Wirel. Commun., vol. 18, no. 11, pp. 5284–5298, 2019, doi: 10.1109/TWC.2019.2935433.
[43] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of fairness and discrimination,” East. Res. Lab. Digit. Equip. Corp. Hudson, MA, vol. 21, 1984.
_||_[1] L. P. Qian, Y. Wu, H. Zhou, and X. Shen, “Joint Uplink Base Station Association and Power Control for Small-Cell Networks with Non-Orthogonal Multiple Access,” IEEE Trans. Wirel. Commun., vol. 16, no. 9, pp. 5567–5582, 2017, doi: 10.1109/TWC.2017.2664832.
[2] A. Ullah, Z. Haq Abbas, F. Muhammad, G. Abbas, and L. Jiao, “Capacity driven small cell deployment in heterogeneous cellular networks: Outage probability and rate coverage analysis,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 6, p. e3876, 2020, doi: 10.1002/ett.3876.
[3] A. Ghosh, I. Saha Misra, and A. Kundu, “Coverage and rate analysis in two-tier heterogeneous networks under suburban and urban scenarios,” Trans. Emerg. Telecommun. Technol., vol. 30, no. 12, pp. 1–16, 2019, doi: 10.1002/ett.3648.
[4] J. Yang, B. Yang, S. Chen, Y. Zhang, Y. Zhang, and L. Hanzo, “Dynamic resource allocation for streaming scalable videos in SDN-aided dense small-cell networks,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2114–2129, 2018, doi: 10.1109/TCOMM.2018.2883627.
[5] P. Paglierani et al., “Techno‐economic analysis of 5G immersive media services in cloud‐enabled small cell networks: The neutral host business model: Providing techno‐economic guidelines for the successful provision of 5G innovative services in small cell networks,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 2, p. e3746, 2020, doi: 10.1002/ett.3746.
[6] K. M. Addali, S. Y. B. Melhem, Y. Khamayseh, Z. Zhang, and M. Kadoch, “Dynamic mobility load balancing for 5G small-cell networks based on utility functions,” IEEE Access, vol. 7, pp. 126998–127011, 2019, doi: 10.1109/ACCESS.2019.2939936.
[7] M. Shafiei-Kordshouli, Z. Zeinalpour-Yazdi, and R. Ramezanian, “Coverage improvement in femtocell networks via efficient utility pricing,” IET Commun., vol. 10, no. 16, pp. 2215–2221, 2016, doi: 10.1049/iet-com.2015.1047.
[8] S. Pirnia, H. Bakhshi, M. Dosaranian‐Moghadam, and R. Khosravi, “Handoff optimization for joint base station association and power control in uplink non‐orthogonal multiple access small cell networks,” Trans. Emerg. Telecommun. Technol., p. e4465, doi: 10.1002/ett.4465.
[9] A. Memarinejad, M. Mohammadi, and M. B. Tavakoli, “Outage Performance Analysis of Multi-Antenna Full-Duplex NOMA Cellular Systems,” J. Commun. Eng., vol. 12, no. 45, pp. 1–18, 2022, doi: 10.30495/jce.2022.692365.
[10] L. P. Qian, Y. J. A. Zhang, Y. Wu, and J. Chen, “Joint base station association and power control via Benders’ decomposition,” IEEE Trans. Wirel. Commun., vol. 12, no. 4, pp. 1651–1665, 2013, doi: 10.1109/TWC.2017.2664832
[11] N. Reisi, “Millimeter-Wave Underlay D2D Communications: Channel Assignment, Transmission mode Selection and Power Control for Full-CSI and Limited-CSI Scenarios,” J. Commun. Eng., vol. 12, no. 46, 2022, doi: 10.30495/jce.2022.1962935.1166.
[12] H. Ding, F. Zhao, J. Tian, and H. Zhang, “Fairness-Driven Energy Efficient Resource Allocation in Uplink MIMO Enabled HetNets,” IEEE Access, vol. 8, pp. 37229–37241, 2020, doi: 10.1109/ACCESS.2020.2975301.
[13] A. Dehghani Firouzabadi and A. M. Rabiei, “Joint user association, subchannel assignment, and power allocation in full‐duplex OFDMA heterogeneous networks,” Trans. Emerg. Telecommun. Technol., vol. 29, no. 12, p. e3548, 2018, doi: 10.1002/ett.3548.
[14] T. Zhou et al., “Joint Device Association and Power Coordination for H2H and IoT Communications in Massive MIMO Enabled HCNs,” IEEE Access, vol. 8, pp. 72971–72984, 2020, doi: 10.1109/ACCESS.2020.2988042.
[15] H. D. Balbi, D. Passos, R. C. Carrano, L. C. S. Magalhães, and C. V. N. Albuquerque, “Association stability and handoff latency tradeoff in dense IEEE 802.11 networks: A case study,” Comput. Commun., 2020, doi: 10.1016/j.comcom.2020.04.059.
[16] M. Ahmadi, S. ali Alaviyan, and A. Malahzadeh, “Investigation of cost reduction of mobility management in cellular networks using user movement model,” J. Commun. Eng., vol. 6, no. 23, 2017, [Online]. Available: https://jce.bushehr.iau.ir/article_682014.html.
[17] A. S. Cacciapuoti, “Mobility-aware user association for 5G mmWave networks,” IEEE Access, vol. 5, pp. 21497–21507, 2017, doi: 10.1109/ACCESS.2017.2751422.
[18] B. Zhang, W. Qi, and J. Zhang, “An energy efficiency and ping-pong handover ratio optimization in two-tier heterogeneous networks,” IEEE 8th Annu. Comput. Commun. Work. Conf. CCWC, vol. 2018-Janua, pp. 532–536, 2018, doi: 10.1109/CCWC.2018.8301767.
[19] Z. Mlika, E. Driouch, and W. Ajib, “Energy-efficient base station operation and association in HetNets: Complexity and algorithms,” IEEE Trans. Wirel. Commun., vol. 17, no. 4, pp. 2690–2702, 2018, doi: 10.1109/TWC.2018.2800754.
[20] J. An, Y. Zhang, X. Gao, and K. Yang, “Energy-efficient base station association and beamforming for multi-cell multiuser systems,” IEEE Trans. Wirel. Commun., vol. 19, no. 4, pp. 2841–2854, 2020, doi: 10.1109/TCOMM.2020.3008699.
[21] R. Sun, M. Hong, and Z.-Q. Luo, “Joint downlink base station association and power control for max-min fairness: Computation and complexity,” IEEE J. Sel. Areas Commun., vol. 33, no. 6, pp. 1040–1054, 2015, doi: 10.1109/JSAC.2015.2416982.
[22] L. A. Fletscher, J. M. Maestre, and C. Valencia Peroni, “An assessment of different user–BS association policies for green HetNets in off‐grid environments,” Trans. Emerg. Telecommun. Technol., vol. 28, no. 12, p. e3227, 2017, doi: 10.1002/ett.3227.
[23] J.-H. Kim, W.-S. Lee, and H.-K. Song, “Performance Enhancement Using Receive Diversity With Power Adaptation in the NOMA System,” IEEE Access, vol. 7, pp. 102867–102875, 2019, doi: 10.1109/ACCESS.2019.2930990.
[24] S. Zhang, N. Zhang, G. Kang, and Z. Liu, “Energy and spectrum efficient power allocation with NOMA in downlink HetNets,” Phys. Commun., vol. 31, pp. 121–132, 2018, doi: 10.1016/j.phycom.2018.09.006.
[25] A. Nasser, O. Muta, H. Gacanin, and M. Elsabrouty, “Non-Cooperative Game Based Power Allocation for Energy and Spectrum Efficient Downlink NOMA HetNets,” IEEE Access, vol. 9, pp. 136334–136345, 2021, doi: 10.1109/ACCESS.2021.3116706.
[26] K. Long, W. Li, M. Jiang, and J. Lu, “Non-cooperative game-based power allocation for energy-efficient NOMA heterogeneous network,” IEEE Access, vol. 8, pp. 49596–49609, 2020, doi: 10.1109/ACCESS.2020.2980191.
[27] Z. J. Ali, N. K. Noordin, A. Sali, and F. Hashim, “Fair energy-efficient resource allocation for downlink NOMA heterogeneous networks,” IEEE Access, vol. 8, pp. 200129–200145, 2020, doi: 10.1109/ACCESS.2020.3035212.
[28] S. K. Goudos, “Joint power allocation and user association in non-orthogonal multiple access networks: An evolutionary approach,” Phys. Commun., vol. 37, p. 100841, 2019, doi: 10.1016/j.phycom.2019.100841.
[29] M. M. Hasan, S. Kwon, and S. Oh, “Frequent-handover mitigation in ultra-dense heterogeneous networks,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 1035–1040, 2018, doi: 10.1109/TVT.2018.2874692.
[30] H. Kalbkhani, S. Jafarpour-Alamdari, M. G. Shayesteh, and V. Solouk, “QoS-based multi-criteria handoff algorithm for femto-macro cellular networks,” Wirel. Pers. Commun., vol. 98, no. 1, pp. 1435–1460, 2018, doi: 10.1007/s11277-017-4925-5.
[31] R. Arshad, H. ElSawy, S. Sorour, T. Y. Al-Naffouri, and M.-S. Alouini, “Velocity-aware handover management in two-tier cellular networks,” IEEE Trans. Wirel. Commun., vol. 16, no. 3, pp. 1851–1867, 2017, doi: 10.1109/TWC.2017.2655517.
[32] Z. Cheng et al., “Joint User Association and Resource Allocation in HetNets Based on User Mobility Prediction,” Comput. Networks, p. 107312, 2020, doi: 10.1016/j.comnet.2020.107312.
[33] M. Alhabo, L. Zhang, N. Nawaz, and H. Al-Kashoash, “Game theoretic handover optimisation for dense small cells heterogeneous networks,” IET Commun., vol. 13, no. 15, pp. 2395–2402, 2019, doi: 10.1049/iet-com.2019.0383.
[34] M. Alhabo and L. Zhang, “Load-dependent handover margin for throughput enhancement and load balancing in HetNets,” IEEE Access, vol. 6, pp. 67718–67731, 2018, doi: 10.1109/ACCESS.2018.2878489.
[35] S. Riyazuddien, D. Venkata Rao, and M. Ramarakula, “Load balancing by diversified quality factors‐based handoff (DQFH) in wireless cellular networks,” Int. J. Commun. Syst., vol. 34, no. 6, p. e4393, 2021, doi: 10.1002/dac.4393.
[36] S. Lin, N. Che, F. Yu, and S. Jiang, “Fairness and load balancing in SDWN using handoff-delay-based association control and load monitoring,” IEEE Access, vol. 7, pp. 136934–136950, 2019, doi: 10.1109/ACCESS.2019.2942717.
[37] R. Vogt, I. Nikolaidis, and P. Gburzynski, “A realistic outdoor urban pedestrian mobility model,” Simul. Model. Pract. Theory, vol. 26, no. 2012, pp. 113–134, 2012, doi: 10.1016/j.simpat.2012.04.006.
[38] R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Struct. Multidiscip. Optim., vol. 41, no. 6, pp. 853–862, 2010, doi: 10.1007/s00158-009-0460-7.
[39] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar, “Coalitional game theory for communication networks,” IEEE Signal Process. Mag., vol. 26, no. 5, pp. 77–97, 2009, doi: 10.1109/MSP.2009.000000.
[40] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24, no. 8, pp. 1439–1451, 2006, doi: 10.1109/JSAC.2006.879350.
[41] V. Granville, M. Krivánek, and J.-P. Rasson, “Simulated annealing: A proof of convergence,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 6, pp. 652–656, 1994, doi: 10.1109/34.295910.
[42] K. Wang, Y. Liu, Z. Ding, A. Nallanathan, and M. Peng, “User association and power allocation for multi-cell non-orthogonal multiple access networks,” IEEE Trans. Wirel. Commun., vol. 18, no. 11, pp. 5284–5298, 2019, doi: 10.1109/TWC.2019.2935433.
[43] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of fairness and discrimination,” East. Res. Lab. Digit. Equip. Corp. Hudson, MA, vol. 21, 1984.