A review study on the ability of radial point interpolation meshless method in solving fracture mechanics problems
Subject Areas : Journal of New Applied and Computational Findings in Mechanical SystemsBehrooz Ariannezhad 1 , Shahram Shahrooi 2 * , Mohammad Shishesaz 3
1 - Department of Mechanical Engineering; Ahvaz Branch; Islamic Azad University; Ahvaz; Iran
2 - Department of Mechanical Engineering. Islamic Azad University. Branch Ahvaz. Ahvaz. Iran
3 - Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Keywords:
Abstract :
[1] Kleiber, M. (Ed.). (1998). Handbook of computational solid mechanics: survey and comparison of contemporary methods. Springer Berlin Heidelberg.
[2] Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. (2005). The finite element method: its basis and fundamentals. Elsevier.
[3] Liu, G. R. and Han, X. (2003). Computational inverse techniques in nondestructive evaluation. CRC press.
[4] Liu, G. R. and Quek, S. S. (2013). The finite element method: a practical course. Butterworth-Heinemann.
[5] Munjiza, A., Knight, E. E. and Rougier, E. (2015). Large strain finite element method: a practical course. John Wiley & Sons.
[6] Arregui-Mena, J. D., Margetts, L. and Mummery, P. M. (2016). Practical application of the stochastic finite element method. Archives of Computational Methods in Engineering, 23(1), pp 171-190.
[7] Liu, G. R.and Gu, Y. T. (2005). An introduction to meshfree methods and their programming. Springer Science & Business Media.
[8] Liu, M. B., Liu, G. R. and Zong, Z. (2008). An overview on smoothed particle hydrodynamics. International Journal of Computational Methods, 5(01), pp 135-188.
[9] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M.,and Krysl, P. (1996). Meshless methods: an overview and recent developments. Computer methods in applied mechanics and engineering, 139(1-4), pp 3-47.
[10] Liu, W. K., Chen, Y., Jun, S., Chen, J. S., Belytschko, T., Pan, C. and Chang, C. (1996). Overview and applications of the reproducing kernel particle methods. Archives of Computational Methods in Engineering, 3(1), pp 3-80.
[11] Patel, V. G. and Rachchh, N. V. (2020). Meshless method–review on recent developments. Materials today: proceedings, 26, pp 1598-1603.
[12] Franke, C. and Schaback, R. (1998). Solving partial differential equations by collocation using radial basis functions. Applied Mathematics and Computation, 93(1), pp 73-82.
[13] Wang, J. G. and Liu, G. (2002). A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 54(11), pp 1623-1648.
[14] Gu, Y. and Zhang, L. C. (2008). Coupling of the meshfree and finite element methods for determination of the crack tip fields. Engineering Fracture Mechanics, 75(5), pp 986-1004.
[15] Gu, Y., Wang, W., Zhang, L. C. and Feng, X. Q. (2011). An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Engineering Fracture Mechanics, 78(1), pp 175-190.
[16] Gu, Y. (2011). An enriched radial point interpolation method based on weak-form and strong-form. Mechanics of Advanced Materials and Structures, 18(8), pp578-584.
[17] Zhuang, X., Cai, Y.,and Augarde, C. (2014). A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoretical and Applied Fracture Mechanics, 69, pp 118-125.
[18] Azevedo, J. M. C., Belinha, J., Dinis, L. M. J. S. and Jorge, R. N. (2015). Crack path prediction using the natural neighbour radial point interpolation method. Engineering Analysis with Boundary Elements, 59, 144-158.
[19] Nguyen, N. T., Bui, T. Q., Zhang, C. and Truong, T. T. (2014). Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method. Engineering analysis with boundary elements, 44, pp 87-97.
[20] Nguyen, N. T., Bui, T. Q. and Truong, T. T. (2017). Transient dynamic fracture analysis by an extended meshfree method with different crack-tip enrichments. Meccanica, 52(10), pp2363-2390.
[21] Wang, J. G. and Liu, G. (2002). On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Computer methods in applied mechanics and engineering, 191(23-24), pp2611-2630.
[22] Fasshauer, G. E. and Zhang, J. G. (2007).On choosing “optimal” shape parameters for RBF approximation. Numerical Algorithms, 45(1), pp345-368.
[23] Sarra, S. A. and Sturgill, D. (2009). A random variable shape parameter strategy for radial basis function approximation methods. Engineering Analysis with Boundary Elements, 33(11), pp1239-1245.
[24] Mongillo, M. (2011). Choosing basis functions and shape parameters for radial basis function methods. SIAM undergraduate research online, 4(190-209), pp2-6.
[25] Afiatdoust, F. and Esmaeilbeigi, M. (2015). Optimal variable shape parameters using genetic algorithm for radial basis function approximation. Ain Shams Engineering Journal, 6(2), pp639-647.
[26] Biazar, J. and Hosami, M. (2017). An interval for the shape parameter in radial basis function approximation. Applied Mathematics and Computation, 315, pp131-149.
[27] Haq, S. and Hussain, M. (2018). Selection of shape parameter in radial basis functions for solution of time-fractional Black–Scholes models. Applied Mathematics and Computation, 335, pp248-263.
[28] Moussaoui, A. and Bouziane, T. (2019). A comparative study of size parameter effects in meshless methods Local PETROV-GALERKIN (MLPG) and Local Radial Point Interpolation method (LRPIM). International Journal of Mechanical Engineering and Technology, 10(7).
[29] Liu, G. R., Jiang, Y., Chen, L., Zhang, G. Y. and Zhang, Y. W. (2011). A singular cell-based smoothed radial point interpolation method for fracture problems. Computers & structures, 89(13-14), pp1378-1396.
[30] Belinha, J., Azevedo, J. M. C., Dinis, L. M. J. S. and Natal Jorge, R. M. (2016). The natural neighbor radial point interpolation method extended to the crack growth simulation. International Journal of Applied Mechanics, 8(01), 1650006.
[31] Belinha, J., Azevedo, J. M. C., Dinis, L. M. J. S. and Natal Jorge, R. M. (2017). The natural neighbor radial point interpolation method in computational fracture mechanics: a 2D preliminary study. International Journal of Computational Methods, 14(04), 1750045.
[32] Zhu, H., Sun, P. and Cai, Y. (2017). Independent cover meshless method for the simulation of multiple crack growth with arbitrary incremental steps and directions. Engineering Analysis with Boundary Elements, 83, pp242-255.
[33] Zhang, H. and Wang, D. (2017). Reproducing kernel formulation of B-spline and NURBS basis functions: A meshfree local refinement strategy for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 320, pp474-508.
[34] Giorgetti, F., Cenni, R., Chiappa, A., Cova, M., Groth, C., Pompa, E., ... & Biancolini, M. E. (2018). Crack propagation analysis of near-surface defects with radial basis functions mesh morphing. Procedia Structural Integrity, 12, pp471-478.
[35] Li, Y., Xu, N., Tu, J. and Mei, G. (2019). Comparative modelling of crack propagation in elastic–plastic materials using the meshfree local radial basis point interpolation method and extended finite-element method. Royal Society open science, 6(11), 90543.
[36] Zhou L, Ren S, Meng G, Ma Z. (2020). Node-based smoothed radial point interpolation method for electromagnetic-thermal coupled analysis. Applied Mathematical Modelling. 78, pp841-62.
[37] Ramalho LD, Belinha J, Campilho RD. (2020). Fracture propagation using the radial point interpolation method. Fatigue & Fracture of Engineering Materials & Structures. 43(1), pp77-91.
[38] Liu Y, Wan Z, Yang C, Wang X. (2020). NURBS-Enhanced meshfree method with an integration subtraction technique for complex topology. Applied Sciences. 10(7), pp2587.
[39] Nguyen NT, Bui TQ, Nguyen MN, Truong TT. (2020). Meshfree thermomechanical crack growth simulations with new numerical integration scheme. Engineering Fracture Mechanics. 235, pp107121.
[40] Novelli L, Gori L, da Silva Pitangueira RL. (2022). Phase-field modelling of brittle fracture with Smoothed Radial Point Interpolation Methods. Engineering Analysis with Boundary Elements. 138, pp219-34.
_||_