Effect of the foliar-spraying of chitosan-plus on the growth and morphology traits of Mentha spicata L. under mycorrhizal fungus symbiosis in an organic farming system
Subject Areas : Medicinal Plants
Mina Kaviani Darani
1
,
Abdollah Ghasemi Pirbalouti
2
*
,
محمد رضا اردکانی
3
,
Hamid Mozafari
4
,
Davoud Habibi
5
1 - Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
2 - Medicinal Plants & Nutraceuticals Program, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
3 - عضو هیات علمی دانشگاه
4 - Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
5 - Department of Agronomy, Karaj Branch, Islamic Azad University, Tehran, Iran
Keywords: Mentha spicata, growth characteristics, mycorrhizal bio-fertilizer, chitosan plus foliar application, mycorrhizal and chitosan coexistence,
Abstract :
In order to investigate the effect of the foliar-spraying of chitosan-plus under the symbiosis of mycorrhizal fungus on the growth and morphological characteristics of Mentha spicata L. (Lamiaceae) under organic farming conditions, a field experiment was done in an organic farm located on the Research and Education field of I.A.U., Karaj Branch (Mehrdasht), Iran. The experimental treatments were arranged as a factorial in a randomized complete block design (RCBD) with four replications. The experimental treatments included factor A: the foliar-spraying (control, water spraying, chitosan foliar spraying at two levels of 2000 and 4000 ppm) and inoculation (inoculation mycorrhizal fungus and non-inoculation). To evaluate the growth and morphological characteristics of the mint plant, the length of the growth period, the height of the tallest branch and the tallest inflorescence, the diameter of the canopy, and to evaluate the effect of mycorrhizal fungus on nutrients such as phosphorus were investigated. The results of the study on the growth characteristics of the desert mint plant showed that mycorrhizal symbiosis, chitosan foliar spraying and year on chlorophyll a, total chlorophyll, number of branches and inflorescences, fresh and dry plant weight, phosphorus and dry matter content at the possible level were significant (p ≤ 0.05). Generally, the application of mycorrhizal fungi alone the foliar spraying of chitosan could an increase the growth and morphological traits, acquiring phosphorus and other nutrients through root growth and further improve the quantitative and qualitative yield of the mint plant. Finally, it can be concluded that the foliar application of chitosan and the soil applied of mycorrhizal fungi due to the non-use of chemical fertilizers in an organic farming system can lead to the health of agricultural products, soil, and environment.
Ali-Shtayeh, M. S., Jamous, R. M., Abu-Zaitoun, S. Y., Khasati, A. I., & Kalbouneh, S. R. (2019). Biological Properties and Bioactive Components of Mentha spicata L. Essential Oil: Focus on Potential Benefits in the Treatment of Obesity, Alzheimer’s Disease, Dermatophytosis, and Drug-Resistant Infections. Evidence-Based Complementary and Alternative Medicine, 2019, 1–11. https://doi.org/10.1155/2019/3834265
Amani Machiani, M., Javanmard, A., Ostadi, A., & Alizadeh, K. (2023). Improvement in Essential Oil Quantity and Quality of Thyme (Thymus vulgaris L.) by Integrative Application of Chitosan Nanoparticles and Arbuscular Mycorrhizal Fungi under Water Stress Conditions. Plants, 12(7). https://doi.org/10.3390/plants12071422
Ansary Ayda, et al. (2018). The interaction of root fungus and putrescine on the physiological characteristics, growth and performance of urban sycamore (Lallemantia iberica) under lead stress conditions.
Ardakani, M. R., Mesbah, R., Moghaddam, A., & Rafiei, F. (2021). Correlation and path analysis of Tobacco (Nicotiana tabacum L.) yield vs root traits and relative water content as affected by Azotobacter, mycorrhizal symbiosis and biochar application under dry-land farming conditions. International Agrophysics, 35(4), 319–329. https://doi.org/10.31545/intagr/143945
Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23(1), 112–121.
Arvin, P. (2019). Study of Different Levels of Nitrogen, Phosphorus and Potassium on Physiological and Morphological Parameters and Essential Oils in Savory Plant (Satureja hortensis L.). 260–279.
Ático Braga, V. A., dos Santos Cruz, G., Arruda Guedes, C., dos Santos Silva, C. T., Santos, A. A., da Costa, H. N., Cavalcanti Lapa Neto, C. J., Aguiar Coelho Teixeira, Á., & Wanderley Teixeira, V. (2020). Effect of essential oils of Mentha spicata L. and Melaleuca alternifolia Cheel on the midgut of Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae). Acta Histochemica, 122(3), 151529. https://doi.org/10.1016/j.acthis.2020.151529
Bakr Shori, A., Salihin Baba, Ahmad, Ay Kee, L., Ay Kee, L. S. B. A., Kee, L. A., Shori, A. B., & Baba, A. S. (2017). Bioactivity and health effects of Mentha spicata. Integrative Food, Nutrition and Metabolism, 5(1). https://doi.org/10.15761/ifnm.1000203
Bouskout, M., Bourhia, M., Al Feddy, M. N., Dounas, H., Salamatullah, A. M., Soufan, W., Nafidi, H. A., & Ouahmane, L. (2022). Mycorrhizal Fungi Inoculation Improves Capparis spinosa’s Yield, Nutrient Uptake and Photosynthetic Efficiency under Water Deficit. Agronomy, 12(1), 1–22. https://doi.org/10.3390/agronomy12010149
Chang, Y., Harmon, P. F., Treadwell, D. D., Carrillo, D., Sarkhosh, A., & Brecht, J. K. (2022). Biocontrol Potential of Essential Oils in Organic Horticulture Systems: From Farm to Fork. Frontiers in Nutrition, 8(January), 1–26. https://doi.org/10.3389/fnut.2021.805138
El Amerany, F., Rhazi, M., Wahbi, S., Taourirte, M., & Meddich, A. (2020). The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Scientia Horticulturae, 261(May), 109015. https://doi.org/10.1016/j.scienta.2019.109015
Elagbar, Z. A., Shakya, A. K., Barhoumi, L. M., & Al-Jaber, H. I. (2020). Phytochemical Diversity and Pharmacological Properties of Rhus coriaria. Chemistry and Biodiversity, 17(4). https://doi.org/10.1002/cbdv.201900561
Farahbakhsh, J., Najafian, S., Hosseinifarahi, M., & Gholipour, S. (2021). Essential Oil Composition and Phytochemical Properties from Leaves of Felty Germander (Teucrium polium L.) and Spearmint (Mentha spicata L.). Journal of Essential Oil-Bearing Plants, 24(1), 147–159. https://doi.org/10.1080/0972060X.2021.1896976
Fazili, M. A., Masood, A., Wani, A. H., & Khan, N. A. (2020). Essential oil of mint: Current understanding and future prospects. In Biodiversity and Biomedicine: Our Future. INC. https://doi.org/10.1016/B978-0-12-819541-3.00016-5
Fierascu, I., Dinu-Pirvu, C. E., Fierascu, R. C., Velescu, B. S., Anuta, V., Ortan, A., & Jinga, V. (2018). Phytochemical profile and biological activities of satureja hortensis l.: A review of the last decade. Molecules, 23(10). https://doi.org/10.3390/molecules23102458
French, K. E. (2017). Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. Frontiers in Microbiology, 8(JUL), 1–8. https://doi.org/10.3389/fmicb.2017.01403
Gaude, N., Bortfeld, S., Erban, A., Kopka, J., & Krajinski, F. (2015). Symbiosis dependent accumulation of primary metabolites in arbuscule-containing cells. BMC Plant Biology, 15(1), 234. https://doi.org/10.1186/s12870-015-0601-7
Ghasemi, A. (2017). Effects of chitosan on gene expression of chavicol-O-methyl transferase and phenylpropanoid components of Ocimum basilicum (purple cultivar) under water deficit. Cellular and Molecular Research (Iranian Journal of Biology), 30(3), 282–294.
Ghasemi Pirbalouti, Abdollah, A. G. B. (2021). Competitive indexes of mixed cultivation of medicinal (Hyssopus Officinalis L.) and (Trigonella Foenum-gereasum L.) in different humidity conditions. Archive of SID. https://doi.org/10.22069/jopp.2018.11244.2041
Guru, A., Dwivedi, P., Kaur, P., & Pandey, D. K. (2021). Exploring the role of elicitors in enhancing medicinal values of plants under in vitro condition. South African Journal of Botany. https://doi.org/https://doi.org/10.1016/j.sajb.2021.10.014
IPNI (International Plant Nutrition Institute). (1999). Functions of Phosphorus in Plants. Better Crops, 83(1), 6–7.
Khalvandi, M., Amerian, M., Pirdashti, H., & Keramati, S. (2021). Does co-inoculation of mycorrhiza and Piriformospora indica fungi enhance the efficiency of chlorophyll fluorescence and essential oil composition in peppermint under irrigation with saline water from the Caspian Sea? PLoS ONE, 16(7 July), e0254076. https://doi.org/10.1371/journal.pone.0254076
Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences, 17(7), 996. https://doi.org/10.3390/ijms17070996
Merlin, E., Melato, E., Lourenço, E. L. B., Jacomassi, E., Junior, A. G., da Cruz, R. M. S., Otênio, J. K., da Silva, C., & Alberton, O. (2020). Inoculation of arbuscular mycorrhizal fungi and phosphorus addition increase coarse mint (Plectranthus amboinicus Lour.) plant growth and essential oil content. Rhizosphere, 15, 100217. https://doi.org/10.1016/j.rhisph.2020.100217
Miozzi, L., Vaira, A. M., Catoni, M., Fiorilli, V., Accotto, G. P., & Lanfranco, L. (2019). Arbuscular mycorrhizal symbiosis: Plant friend or foe in the fight against viruses? Frontiers in Microbiology, 10(JUN). https://doi.org/10.3389/fmicb.2019.01238
Mirajkar, S. J., Dalvi, S. G., Ramteke, S. D., & Suprasanna, P. (2019). Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. International Journal of Biological Macromolecules, 139, 1212–1223. https://doi.org/10.1016/j.ijbiomac.2019.08.093
Mohamadpoor, H., Pirbalouti, A. G., Bajalan, I., & Malekpoor, F. (2019). Chemical Compositions and Antioxidant Activity of Essential Oils from Inflorescences of Two Landraces of Hyssop [Hyssopus officinalis L. subsp. angustifolius (Bieb.)] Cultivated in Southwestern, Iran.
Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters, 17(4), 1667–1692. https://doi.org/10.1007/s10311-019-00904-x
Pirbalouti, A. G., Goudarzian, A., & Hossaynzadeh, M. (2020). Menthol, Balance of Menthol/Menthone, and Essential Oil Contents of Mentha × Piperita L. under Foliar-Applied Chitosan and Inoculation of Arbuscular Mycorrhizal Fungi. Journal of Essential Oil-Bearing Plants, 23(5), 1012–1021. https://doi.org/10.1080/0972060X.2020.1828177
Pirbalouti, A. G., Mohamadpoor, H., Bajalan, I., & Malekpoor, F. (2019). Chemical Compositions and Antioxidant Activity of Essential Oils from Inflorescences of Two Landraces of Hyssop [Hyssopus officinalis L. subsp. angustifolius (Bieb.)] Cultivated in Southwestern, Iran. Journal of Essential Oil-Bearing Plants, 22(4), 1074–1081. https://doi.org/10.1080/0972060X.2019.1641431
Rezaie, M. A., Pasari, B., Mohammadi, K., Rokhzadi, A., & Karami, E. (2020). Study the effect of mycorrizal fungi¸chitosan and cycocel on agronomic characteristics of rainfed chickpea. Legume Research, 43(4), 546–551. https://doi.org/10.18805/LR-509
Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance , 10 Frontiers in Plant Science 1068 (2019). https://doi.org/10.3389/fpls.2019.01068
Tarraf, W., Ruta, C., De Cillis, F., Tagarelli, A., Tedone, L., & De Mastro, G. (2015). Effects of mycorrhiza on growth and essential oil production in selected aromatic plants. Italian Journal of Agronomy, 10(3), 160–162. https://doi.org/10.4081/ija.2015.633
Yeshi, K., Crayn, D., Ritmejerytė, E., & Wangchuk, P. (2022). Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules, 27(1), 313. https://doi.org/10.3390/molecules27010313