A review of forest biomass estimation and modeling methods by remote sensing
Subject Areas : EnvironmentRazieh Hadavand 1 , Sadegh Mokhtarisabet 2 , Reza Abedzadegan Abdi 3
1 - Department of Remote Sensing and GIS, Yazd Branch, Islamic Azad University, Yazd, Iran
2 - Department of Remote Sensing and GIS, Yazd Branch, Islamic Azad University, Yazd, Iran
3 - Faculty of Agriculture and Natural Resources, Chalous Branch, Islamic Azad University, Chalous, Iran
Keywords:
Abstract :
Amini.J, Sadeghi.Y, (2013). Optical and radar satellite imagery modeling forest biomass in northern Iran”, Iranian Remote Sensing &GIS, 4,4,69-82 .
Amini, J., & Sumantyo, J. T. S. (2009). Employing a method on SAR and optical images for forest biomass estimation. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4020-4026. https://doi.org/10.1109/TGRS.2009.2034464
Aslan, A., Rahman, A. F., Warren, M. W., & Robeson, S. M. (2016). Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote sensing of environment, 183, 65-81. https://doi.org/10.1016/j.rse.2016.04.026
Baharluie.M & Azizi.Z, (2016), Geoeye Application in Forest Studies ,Fifth Islamic Conference of Iran Progress, Basic Model of Progress.
Cleve, C., Kelly, M., Kearns, F. R., & Moritz, M. (2008). Classification of the wildland–urban interface: A comparison of pixel-and object-based classifications using high-resolution aerial photography. Computers, Environment and Urban Systems, 32(4), 317-326. https://doi.org/10.1016/j.compenvurbsys.2007.10.001
Dube, T., & Mutanga, O. (2015). Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 36-46. https://doi.org/10.1016/j.isprsjprs.2014.11.001
FAO, (2016). Global forest resources assessment. State of the World’s Forests, Paper 16. Forests and agriculture: land-use challenges and opportunities. Rome, PP20.
Galidaki, G., Zianis, D., Gitas, I., Radoglou, K., Karathanassi, V., Tsakiri–Strati, M., ... & Mallinis, G. (2017). Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem. International journal of remote sensing, 38(7), 1940-1966. https://doi.org/10.1080/01431161.2016.1266113
Ghasemi, N., Sahebi, M. R., & Mohammadzadeh, A. (2012). Biomass estimation of a temperate deciduous forest using wavelet analysis. IEEE Transactions on Geoscience and Remote Sensing, 51(2), 765-776. https://doi.org/10.1109/TGRS.2012.2205260
Karl, J. W., & Maurer, B. A. (2010). Multivariate correlations between imagery and field measurements across scales: comparing pixel aggregation and image segmentation. Landscape Ecology, 25, 591-605. https://doi.org/10.1007/s10980-009-9439-4
Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., Zhang, M., ... & Saah, D. (2012). Aboveground forest biomass estimation with data and uncertainty analysis of the estimates. International Journal of Forestry Research, 2012. https://doi.org/10.1155/2012/436537
Lu, D., Mausel, P., Brondı́zio, E., & Moran, E. (2004). Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest ecology and management, 198(1-3), 149-167. https://doi.org/10.1016/j.foreco.2004.03.048
Mokhtari, M. H., Busu, I., & Parvizi, S. (2021). METRIC based evapotranspiration mapping of pistachio orchard in the semi-arid region. Journal of Nature and Spatial Sciences (JONASS), 1(2), 1-15.
Mahdavi Saeidi, A., Babaie Kafaky, S., & Mataji, A. (2020). Detecting the development stages of natural forests in northern Iran with different algorithms and high-resolution data from GeoEye-1. Environmental Monitoring and Assessment, 192, 1-15. https://doi.org/10.1007/s10661-020-08612-8
Nelson, R., Margolis, H., Montesano, P., Sun, G., Cook, B., Corp, L., ... & Prisley, S. (2017). Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sensing of Environment, 188, 127-140. https://doi.org/10.1016/j.rse.2016.10.038
Nichol, J. E., & Sarker, M. L. R. (2010). Improved biomass estimation using the texture parameters of two high-resolution optical sensors. IEEE Transactions on Geoscience and Remote Sensing, 49(3), 930-948. https://doi.org/10.1109/TGRS.2010.2068574
Ramezani, M. R., & Sahebi, M. R. (2015). Forest biomass estimation using SAR and optical images. Engineering Journal of Geospatial Information Technology, 3(1), 15-26. https://doi.org/10.29252/jgit.3.1.15
Sadeghi.Y, (2010)."Estimation of forest biomass using light and sunny images and SAR", MASTER, Thesis,P 149.
Sinha, S., Jeganathan, C., Sharma, L. K., & Nathawat, M. S. (2015). A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology, 12, 1779-1792. https://doi.org/10.1007/s13762-015-0750-0
Smithson, P. A. (2002). IPCC, 2001: climate change 2001: the scientific basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by JT Houghton, Y. Ding, DJ Griggs, M. Noguer, PJ van der Linden, X. Dai, K. Maskell and CA Johnson (eds). Cambridge University Press, Cambridge, UK, and New York, USA, 2001. No. of pages: 881. Price£ 34.95, US 49.95,ISBN0‐521‐01495‐6(paperback).£90.00,US 130.00, ISBN 0‐521‐80767‐0 (hardback).
Zarei, M., Tazeh, M., Moosavi, V., & Kalantari, S. (2021). Evaluating the changes in Gavkhuni Wetland using MODIS satellite images in 2000-2016. Journal of Nature and Spatial Sciences (JONASS), 1(1), 27-41.