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Background and objective: Detailed evaluation of biomass using Remote
Sensing and Geographic Information systems is very important to manage the

Revised 01 August 2023 forest and its role as a carbon source and climate change. Ground sensing data

Accepted 04 August 2023 have made a big change in compiling and exploiting information about forest
biomass, But non-local equations and the use of different radar and optical

Keywords: imgges,_ and qlso huge expenses have _cause_d ambiguities_ i_n_ the accurate

Biomass estimation o_f biomass. This stqdy aims to investigate the papabllltles of different

GIS remote sensing data for modeling and estimating forest biomass.

Optics Materials and methods: Today, by using the conducted research and also by

examining the conducted methods, it is possible to have an accurate assessment
of biomass estimation, which brings the lowest cost and the highest efficiency.
Radar In this study, the challenges of the forest biome were investigated by reading
numerous domestic and international articles and also with the opinion of natural
resources experts in Iran.

Results and conclusion: After reviewing the opinions of experts, all the
solutions and challenges of the existing methods for estimating and modeling the
forest biomass, it was concluded that to increase the accuracy and reduce the
costs, the use of remote sensing capabilities can be useful in the assessment of
the forest biomass. Decision makers and managers, especially in the natural
resources area, can use remote sensing capabilities to prevent crises and monitor
forests.

Remote sensing

1. Introduction

In recent years, the forest cover as an indicator of development has great significance. It plays an
important role in establishing the ecological balance on Earth and is one of the most important and
influential issues around the world. Forest biomass is an important criterion for ecosystem efficiency
and has a significant potential for energy production and evaluation of available carbon for climate
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change modeling. Forests are necessary for balancing and moderating climatic change. Forests and trees
play a major role in carbon capture and storage and in providing environmental services (FAO, 2016).

Accurate evaluation of biomass in order to forest management and understanding its role as a carbon
source is very important. Half of the forest biomass consists of carbon. The forests store approximately
80% of the above-ground and 40% of below-ground carbon storage (Smithson, 2002). Atmospheric
carbon is transformed into organic material by photosynthesis and returns again to the atmosphere by
carbon dioxide-induced mechanisms involved. Biomass indicates the environmental health conditions
of a forest ecosystem. Integrated geographical techniques, remote sensing, and (SAR), have the
significant potential to map and understand the environmental processes of the forest (Sinha et al., 2015).

Accurate, true, and up-to-date information from forests provided by remote sensing and geographic
information systems as well as modern methods in a very short time and at a very low cost, can
effectively be resulted in enforcing the Kyoto Protocol of the United Nations Convention on Climate
Change (Nichol & Sarker, 2010).

Given that the deforestation rate in the world is alarming, scientists have proven that biomass changes
are important for evaluating the amount of deforestation and forestry processes. Estimations of forest
biomass are recorded in terms of energy, however, uncontrolled biomass production can lead to
deforestation, because burning trees for power can emit more carbon pollution than burning coal, and
the industry causes long-lasting damage to forests and wildlife.

The biomass energy industry turns trees into wood pellets and then burns them for power at a utility-
scale. Organic matters used to generate biomass energy include forest debris (shoots, dead trees), wood
chips, tree cuttings, and municipal solid waste. This means that wood is the largest biomass energy
source.

Due to the environmental, topography, and biophysical complexities of the forest ecosystems, global
and transferable techniques for measuring carbon resources have not been developed so far, but remote
sensing techniques have made them easy to access (Galidaki et al., 2017).

Although traditional classification methods such as the minimum distances and the maximum
likelihood are known as effective methods for extracting coverage and land use information, there are
also some constraints such as failed to use of features including texture, size scale, association with other
classes, and the shape of pixels adjacent to the classification algorithm (Cleve et al., 2008).

The distinction between different classes using spectral properties is mostly difficult and creates noise
in the image. To manage the problem and to increase the accuracy of the maps, spectral information can
be combined with other side information such as image texture parameters, moisture maps, DEM, and
other information. In addition, newer and more complete algorithms which combine spectral data with
textural and conceptual data could be used to provide planners with better and more accurate maps in
order to make better decisions (Cleve et al., 2008; Mokhtari et al., 2021; Zarei et al., 2021).

In experimental works, Nichol and Sarker (2010), Ghasemi et al. (2012), and Amini and Sumantyo,
(2009) have indicated that a combination of optical and radar data and simultaneous use of them would
provide better results for estimating the amount of biomass than using each sensor separately.

Remote sensing is the most important method for the estimation of biomass and is considered to be
one of the most important methods for collecting data because it has the lowest direct contact with
objects and phenomena. With this framework, however, although field methods are very accurate, these
methods are also very time-consuming, expensive and, in some cases, cause destruction to the forest,
and are practical for small and accessible areas, and the models used are error-prone. To solve the
problems and to measure biomass and its production, new and controllable methods, as well as remote
sensing technology, should be used.

80



R. Hadavand et al Journal of Nature and Spatial Sciences (2023) 3(1), 79-84

There are no global and local equations for estimating biomass, and most available methods are
ambiguous in accurate estimating. In recent studies, each of these equations has a lack of information
described below:

1. Only optical images are used to estimate biomass.
2. Only radar images are used.

3. The radar and optical images have been used, but the image type has not been suitable for the
purpose of the research.

4. The traditional method (sampling) is used, which is very destructive.
5. Biodiversity and species diversity are not considered

6. Biophysical and biochemical parameters are not properly selected in relation to the image and
sensor.

7. There are no exact equations for biomass prediction.

Galidaki et al. (2017) emphasized the importance of biomass estimation using remote sensing and
focusing on forests and other forest areas in the Mediterranean ecosystem, and on the role of forests in
the carbon cycle, energy generation potential, and carbon valuation for climatic change modeling. In this
study biomass is divided into two parts:

1. AGB: Above-Ground Biomass including stems, trunks, branches, shells, seeds, and leaves.
2. BGB: Below-Ground Biomass including all roots larger than 2 mm in diameter.

Most research and biomass estimates are concentrated on AGB. In the Mediterranean forests and
other biotic forests, there are bushes and trees, shrubs, under-bushes, and herbaceous plants that are
indicated using optical data.

Nelson et al. (2017) in the work of observations of groundwater, air, and above-ground biomass
satellites in the United States and Mexico are estimated using hybrid evaluations. Biomass has been
estimated using optical and SAR images by Sadeghi, (2010) and with the advice of Professor Schiama.
In this thesis, limited data from ?round and remote sensing techniques for Guilan forests in the north of
Iran have been used. The samples were collected from the forest and parameters such as height and
diameter of the tree were calculated in 28 pieces with dimensions of 900 square meters. Then, using
optical and radar images, the relationship between remote sensing data and forest biomass data was
estimated through regression and artificial neural network equations. According to Ramezani and
Sahebi, (2015), the biomass amount can be estimated using SAR and optical images.

In general, the three steps that are expected for biomass estimation are as follows

1. Extracting the attributes of the images

2. Selecting the attributes using a genetic algorithm

3. Biomass estimation with different equations, for example, neural network or regression analysis

In a study, Amini and Sadeghi (2013) modeled the biomass of Guilan forests, in the North of Iran
using optical and radar images. They considered it as the best model.

In the fifth Conference on Iranian Islamic Pattern, the development of the basic progress pattern in
2016, the Geoeye Sensor, which has a high sensitivity, has been used in forest science (Mahdavi Saeidi
et al., 2020; Baharluie & Azizi, 2016). This sensor has been evaluated in estimating the number of trees
per hectare (Mazandaran tourism forest) and forest trees' biomass (Ekazava reserve forest). This study
shows that the use of this sensor is very accurate for forest studies and other applications. With high
spatial resolution, it is possible to get a precision of 3 meters without using ground control points. The
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use of up-to-date data is essential for environmental planners, Earth scientists, land resource managers,
and decision-makers (Karl & Maurer, 2010).

LU et al. (2004) examined biomass estimations in young and dense forests using satellite images in
the Amazon basin. In this research, various plant indexes, and tissue analysis were investigated. A
multivariate regression model has been created for a variety of image extraction indexes such as image
bands, plant indexes, tissue properties, and plant data. This work showed that image bands and plant
indexes could not be separately used as an effective model for estimating biomass. However,
multivariate regression models including texture and signature spectrum, improved biomass estimates,
and especially the models developed cover high-density areas. The best way to model biomass is to
combine radar and optical images.

Several studies have been conducted to design methods and models for measuring forest biophysical
parameters (such as canopy, leaf area index, biomass, and age of trees). However, methods based on
remote sensing techniques used to examine this issue have some restrictions. Since radar images can
provide accurate information from the trunk of the trees due to the use of macro-wave bands and side-
looking geometry, there is a strong link between the biomass and the backscattering of radar images with
combined aperture (SAR). Therefore, complementary use of this kind of data can provide a better and
more comprehensive model for computing biomass.

It should be noted that one of the factors affecting the correlation coefficient of above-ground biomass
model data and ground measurements is the magnitude of the error in measuring ground data. Providing
a comprehensive and standardized guide is essential for ground data collection across the country and
careful monitoring of how it is to be taken.

Image segmentation followed by visual interpretation of composite PALSAR images was used to
delineate mangrove areas. Mangrove height and aboveground biomass were mapped using the SRTM
DEM, which was calibrated with field-measured data via quantile regression models. The overall
accuracy of land cover classification was 94.38% with a kappa coefficient of 0.94 when validated with
field inventory data and Google Earth images (Lu et al., 2012; Aslan et al., 2016).

The model estimates of mangrove biomass were within 90% confidence intervals of area-weighted
biomass derived from field measurements. When validated at the landscape scale, the difference between
modeled and measured aboveground mangrove biomass was 3.48% with an MAE of 105.75 Mg/ha. are
relc}able for mapping and monitoring mangrove composition, height, and biomass in large areas of
Indonesia.

Dube and Mutanga, (2015) in sub-Saharan Africa evaluated the utility of the Landsat 8 medium
resolution (OLI) large-bandwidth multispectral dataset in quantifying AGB in forest plantations.

using two non-parametric algorithms: stochastic gradient boosting and random forest ensembles.

The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset
provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis, and Pinus taeda especially
when using the extracted spectral information together with the derived spectral vegetation indices.
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