Effects of Ultrasonic and High-Pressure Homogenization Pretreatment on the Enzymatic Hydrolysis and Antioxidant Activity of Yeast Protein Hydrolysate
Subject Areas : food microbiologyZ.S. Moosavi 1 , S. Mirdamadi 2 , M. Mirzaei 3 , M. Laripoor 4
1 - M. Sc. of the Department of Microbiology, North Branch of Islamic Azad University, Tehran, Iran.
2 - Professor of the Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran.
3 - Assistant Professor of the Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
4 - Assistant Professor of the Department of Microbiology, North Branch of Islamic Azad University, Tehran, Iran.
Keywords:
Abstract :
Běehalová, B. A. & Beran, K. (1986). Autolysis of disintegrated cells of the yeast Saccharomyces cerevisiae. Acta Biotechnologica, 6 (2), 147-152.
Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D. & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by products proteins. Food Chemistry, 118 (3), 559–565.
Church, F. C., Swaisgood, H., Porter, D.H. & Catignani, G.L. (1983). Spectrophotometric assay using O-Phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science, 66 (6), 1219-1227.
Conway, J., Gaudreau, H. & Champagne, C.P. (2001). The effect of the addition of proteases and glucanases during yeast autolysis on the production and properties of yeast extracts. Canadian Journal of Microbiology, 47(1), 18–24.
Diniz, A. M. & Martin, A. M. (1997). Optimization of nitrogen recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias) protein: composition of the hydrolysates. International Journal of Food Science and Nutrition, 48, 191-200.
Funtenberger, S., Dumay, E. & Cheftel, J. C.(1995). Pressure-induced aggregation of B-Lactoglobulin in pH 7.0 Buffers. LWT - Food Science and Technology, 28, 410-418.
Guerard, F., Guimas, L. & Binet, A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic, 19-20 (2), 498-498.
Han, I.H, Swanson, B,G.& Baik, B.K. (2007). Protein digestibility of selected legumes treated with ultrasound and high hydrostatic pressure during soaking. Cereal Chemistry, 84, 518-521
Hartman, R. & Meisel, H. (2007). Food derived peptides with biological activity: from research to food application. Current Opinion in Biotechnology, 18, 163-169.
Hartree, E. F. (1972). Determination of protein: A Mmodification of the Lowry method that gives a linear Photometric response. Analytical Biochemistry, 48(2), 422-427.
Hernawan, T. & Fleet, G. (1995). Chemical and cytological changes during the autolysis of yeasts. Journal of Industrial Microbiology, 14, 440-450.
Hettiarachchy, NS., Glenn, K.C. Gnanasambandam, R. & Johnson, M.G. (1996). Natural antioxidant extract from fenugreek (Trigonella foenumgraecum) for ground beef patties. Journal of Food Science, 61, 516–519.
Iametti, S., Donnizzelli, E., Vecchio, G., Rovere, P. P., Gola, S. & Bonomi, F. (1998). Macroscopic and structural consequences of high-pressure treatment of ovalbumin solutions. Journal of Agricultural and Food Chemistry, 46, 3521-3527.
Jamdar, S. N., Rajalakshmi, V., Pendekar, M.D., Juan, F., Yardi, Y. & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121(1), 178-184.
Whitaker, J. R., Voragen, A. G. J. & Wong, D. W. S. (2002). Proteolytic enzymes. Handbook of Food Enzymology. CRC Press, 26 Pages.
Jun, S. Y., Park, P. J., Jung, W.K. & Kim, S. K. (2004). Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin Sole (Limanda aspera) frame protein. European Food Research and Technology, 219(1), 20-26.
Kristinsson, H.G.& Rasco, B. A. (2000a). Fish protein hydrolysates: production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40, 43–81.
Kristinsson, H.G. & Rasco, B. A. (2000b). Biochemical and functional properties of atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry, 48, 657-666.
Leeb, E., Kulozik , U. & Cheison, S.(2011). Thermal pretreatment of β-Lactoglobulin as a tool to steer enzymatic hydrolysis and control the release of peptides. Procedia Food Science, 1, 1540-1546.
Lowry, O. H., Fan, A.L., Randall, R.J. & Rosebrough, N.J. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193, 256–275.
Lukondeh, T., Ashboit, N.& Rogers, P.L. (2003). Evaluation of Kluyveromyces marxianus as a source of yeast autolysates. Journal of International Microbiology and Biotechnology, 30, 52-56.
Martysiak-Zurowska, D. a. & Wenta, W. (2012). A comparison of ABTS and DPPH methods for assessing the total antioxidant aapacity of human milk. Acta Scientiarum Polonorum Technologia Alimentaria, 11(1), 83-89.
Memarpoor-Yazdi, M., Mahakia, H., & Zare-Zardinib, H. (2013). Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus Jujuba fruits. Journal of Functional Foods, 5, 62-70.
Mikhaylin, S., Boussetta, N., Vorobiev, E. & Bazinet, L. (2017). High voltage electrical treatments to improve the protein susceptibility to enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering 5(12): 11706-11714.
Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M. & Hosseini, E. (2015). Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods, 19, 259-268.
Mirzaei, M., Mirdamadi, S., Ehsani, M.R. & Aminlari, M. (2017). Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. Journal of Food and Drug Analysis, 26(2), 696-705.
Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M.& Hosseini, E. (2015). Characterization of yeast protein enzymatic hydrolysis and autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus. Journal of Food Biosciences and Technology, 5(2), 19-30.
Mirzaei, M., Mirdamadi, S., Ehsani, M.R., Aminlari, M., & Hosseini, E. (2016). Antioxidant, ACE-inhibitory and antioxidant activity of Kluyveromyces marxianus protein hydrolysates and their peptide fractions. Functional Foods in Health and Diseases, 6(7), 428-439.
Nasri, M. (2017). Protein hydrolysates and biopeptides: production, biological activities, and applications in foods and health benefits., A Review. Advances in Food and Nutrition Research, 81, 109-159.
Ovissipour, M., Motamedzadegan, A. A. M., Rasco, B., Safari, R., & Shahiri, H. (2009a). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the persian sturgeon (Acipenser persicus) Viscera. Food Chemistry, 115, 238-242.
Ovissipour, M., Safari, R., Motamedzadegan, A.& Shabanpour, B. (2009b). Chemical and biochemical hydrolysis of persian sturgeon (Acipenser persicus) visceral protein. Food and Bioprocess Technology, 5(2), 460-465.
Penas, E. P. G. & Gomez, R. (2004). High pressure and the enzymatic hydrolysis of soybean whey Proteins. Food Chemistry, 85, 641-648.
Qiufang L., Ren, X. Ma, H., Li, S., Xu, K. & Oladejo, O. A. (2017). Effect of low-frequency ultrasonic-assisted enzymolysis on the physicochemical and antioxidant properties of corn protein hydrolysates. Journal of Food Quality, https://doi.org/10.1155/2017/2784146.
Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y. & Yang, Y. (2012). ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chemistry, 135(3), 1245-1252.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26 (9-10), 1231-1237.
Revillion, J. P., Brandelli, A. & Ayub, M. A. Z. (2003). Production of yeast extract from whey using Kluyveromyces marxianus. Brazilian Archives of Biology and Technology, 46(1), 121-128.
Salami, M., Yousefi, R., Ehsani, M. R., Dalgalarrondo, M. L., Chobert, J. M., Haertle, T., Razavi, S. H., Saboury, A. A., NiasariNaslaji, A. & Moosavi-Movahedi, A. A. (2008). Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. International Dairy Journal, 18(12), 1097-1102.
Singh, A. a& Ramaswamy, H. S. (2014). Effect of high-pressure treatment on trypsin hydrolysis and antioxidant activity of egg white proteins. International Journal of Food Science & Technology, 49(1): 269-279.
Son, S. A. & Levis, B.A. (2002). Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. Journal of Agricultural and Food Chemistry, 50(3), 468-472.
Souissi, N., Bougatef, A., Triki-Ellouz, Y., & Nasri, M. ( 2007). Biochemical and functional properties of sardinella (Sardinella aurita) by product hydrolysates. Food Technology and Biotechnology, 45, 187-194.
Sun, Q., Luo, Y., Shen, H. & Hu, X. I. N. (2011). Effect of pH, temperature and enzyme to substrate ratio on the antioxidant activity of porcine hemoglobin hydrolysate prepared with pepsin. Journal of Food Biochemistry, 35(1), 44-61.
Tanguler, H. & Erten, H. (2008). The utilization of spent brewer's yeast for yeast extract production by autolysis: the effect of temperature. Food and Bioproducts Processing, 86(4), 317-321.
Van der Plancken, I., Van Loey, A. & Hendrickx, M. (2005). Combined effect of high pressure and temperature on selected properties of egg white proteins. Innovative Food Science and Emerging Technologies, 6, 11-20.
Vilela, R.M., Lands, L.C., Chan, H.M., Azadi, B. & Kubow, S. (2006). High hydrostatic pressure enhances whey protein digestibility to generate whey peptides that improve glutathione status in CFTR deficient lung epithelial cells. Molecular Nutrition and Food Research, 50, 1013-1029.
Wang, B., Li, Z.R., Chi, C.F., Zhang, Q.H., & Luo, H.Y. (2012). Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna Lewini muscle. Peptides, 33, 240-250.
Wang, Y., Yao, S. & Wu, T. (2003). Combination of induced autolysis and sodium hypochlorite oxidation for the production of Saccharomyces cerevisiae 1-3 β-D-glucan. World Journal of Microbiology and Biotechnology, 19(9), 947-952.
Wasswa, J., Tang, J., Gu, X. H. & Yuan, X. Q. (2007). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from Grass Carp (Ctenopharyngodon idella) skin. Food Chemistry, 104, 1698-1704.
Wiriyaphan, C., Chitsomboon, B. & Yongsawadigul, J. (2012). Antioxidant activity of protein hydrolysates derived from threadfin bream Surimi by products. Food Chemistry, 132(1), 104-111.
Yin, S.W, Tang, C.H., Wen, Q.B., Yang, X.Q. & Li, L. (2008). Functional properties and in vitro trypsin digestibility of red kidney bean ( Phaseolus vulgaris L.) protein isolate: effect of high-pressure treatment. Food Chemistry, 110, 938-945.
Zhang, T., Jiang, B., Miao, M., Mu, W. & Li, Y. (2012). Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chemistry, 135(2012), 904-912.