Investigation on Physicochemical and Rheological Properties of Malva Leaves Gum (Malva Neglecta)
Subject Areas : MicrobiologyA. Hassanpour Amnieh 1 , H. Jooyandeh 2 , B. Nasehi 3 , M. Hojjati 4
1 - دانشجوی کارشناسی ارشد گروه علوم و صنایع غذایی دانشگاه کشاورزی و منابع طبیعی رامین خوزستان، خوزستان، ایران
2 - دانشیار گروه علوم و صنایع غذایی دانشگاه کشاورزی و منابع طبیعی رامین خوزستان، خوزستان، ایران
3 - Department of Food Technology, Payame Noor University (PNU), Iran
4 - دانشیار گروه علوم و صنایع غذایی دانشگاه کشاورزی و منبع طبیعی رامین خوزستان، خوزستان، ایران
Keywords: Gum, Malva Neglecta, Physicochemical Properties, Rheology,
Abstract :
Introduction: Gums are polysaccharide components with high molecular weight that easily suspend in water and are dispersed under suitable conditions. They are used as stabilizer, texture modifier, gelling agent, thickener and emulsifier. The aim of this study was to determine the properties of the new Malva leaf’s gum. Materials and Methods: The gum was isolated from the leaf of Malva neglecta plant by warm-water extraction. Purification was carried out by barium complexion. Purified gum was evaluated in terms of physicochemical properties. Furthermore, rheological properties of extracted gum were evaluated in shear rate at the range of 0.1–1000 s-1 with Brookfield viscometer and flow behavior and effect of temperature and gum concentration on the viscosity was evaluated. Results: The Purified gum contained 8.12±0.43% moisture, 77.04± 0.83% carbohydrate, 8.56± 0.62% protein, 2.49± 0.3% ash and 5.33± 0.29% uronic acid. Among the rheological models, power law model appropriately described the behavior of the gum. Arrhenius model was also properly applied to evaluate and describe the relation between gum viscosity and temperature. Three model's power, exponential and polynomial were used to evaluate the effect of gum concentration on the apparent viscosity in the shear rate of 10 s-1. Conclusion: According to shear thinning behavior, Malva gum can be used in food industry. Extracted gum showed higher sensitivity to temperature at higher levels of gum concentration and power law model was selected as the best model to assess the effect of gum concentration on the viscosity.
زرگران، ع.، محمدیفر، م. و بلاغی، س. (1378). مقایسه برخی ترکیبات شیمیایی و ویژگیهای رئولوژیکی صمغ کتیرای ایرانی تراویده از دو گونه گون
A. floccosus و A. rahensis. مجله علوم تغذیه و صنایع غذایی ایران، دوره 3، شماره 4، صفحات 17-9.
زرگری، ع. (1371). گیاهان دارویی. جلد اول، چاپ ششم، انتشارات دانشگاه تهران، صفحات 352-345
فرحناکی، ع.، عسگری، ح. و بختیاری، م. (1390). بررسی برخی خواص رئولوژیکی هیدروکلوئید دانه گیاه شاهی. مجله مهندسی بیوسیستم ایران، دوره 42، شماره 1، صفحات 120-113.
کاراژیان، ح. (1389). طبیعت پلیالکترولیتی صمغ دانه شاهی. نشریه پژوهشهای علوم و صنایع غذایی ایران، دوره 6، شماره 1، صفحات 43-37.
Abbastabar, B., Azizi, M. H., Adnani, A. & Abbasi, S. (2014). Determining and modeling rheological characteristics of quince seed gum. Food Hydrocolloids, 1-6.
Amin, A. M., Ahmad, A. S., Yin, Y. Y., Yahya, N. & Ibrahim, N. (2007). Extraction, purification and characterization of durian (Durio zibethinus) seed gum. Food Hydrocolloids, 21(2), 273-279.
AOAC. (1990). Official methods of Analysis of the Association of Official Analytical Chemists, 15th edn., Arlington, USA.
Blumenkrantz, N. & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Journal of Analytical Biochemistry, 54(2), 484-489.
Braun, D. B. & Rosen, M. R. (2010). Rheology modifiers handbook. Practical use and applications. New York: William Andrew Publishing.
Brummer, Y. & Cui, S. W. (2005). Chemistry, Phys-ical Properties, and Applications, CRC, Boca Raton, FL, Food Carbohydrates, 67–104.
Cui, W. & Mazza, G. (1996). Physicochemical characteristics of flaxseed gum. Food Research International, 29(3-4), 397-402.
Dalar, A., Turker, M. & Konczak, I. (2012). Antioxidant capacity and phenolic constituents of Malva neglectaWallr. and Plantago lanceolata L. from Eastern Anatolia Region of Turkey. Herbal Medicine, 2, 42 –51.
Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17, 25-39.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
Farhoosh, R. & Riazi, A. (2007). A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature. Food Hydrocolloids, 21, 660-666.
Hassan, B. H. & Hobani, A. I. (1998). Flow properties of Rosella Extract. Food Engineering, 35, 459-470.
Jahanbin, K., Moini, S., Gohari, A. R., Emam-Djomeh, Z. & Masid, P. (2012). Isolation, purification and characterization of a new gum from A canthophyllum bracteatum roots. Journal of Food Hydrocolloids, 27, 14-21.
Koocheki, A., Taherian, A. R. & Bostan, A. (2013). Studies on the steady shear flow behavior and functional properties of Lepidium perfoliatum seed gum. Journal of Food Research International, 50, 446–456.
Lai, L. S. & Lin, P. H. (2004). Applications of decolorized hsian-tsao leaf gum to low fat salad dressing model emulsions: A rheological study. Journal of the Science of Food and Agriculture, 84(11), 1307–1314.
Malsawmtluangi, C., Thanzami, K., Lalhlenmawia, H., Selvan, V., Palanisamy, S., Kandasamy, R. & Pachuau, L. (2014). Physicochemical characteristics and antioxidant activity of Prunus cerasoides D. Don gum exudates,” International Journal of Biological Macromol, 69, 192–199.
Marcotte, M., Taherian, A. R. & Ramaswamy, H. S. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 34, 695-704.
Maskan, M. & Gogus, F. (2000). Effect of sugar on their rheological properties of sunflower oil-water emulsions. Food Engineering, 43, 173-177.
Mothe, C. G. & Rao, M. A. (1999). Rheological Behavior of aqueous dispersion of cashew gum and gum Arabic: Effect of concentration and blending. Food Hydrocolloids, 13(6), 501-506.
Rana, V., Rai, P., Tiwary, A. K., Singh, R. S., Kennedy, J. F., & Knill, C. J. (2011). Modified gums: Approaches and applications in drug delivery. Carbohydrate Polymers, 83, 1031–1047.
Razavi, S. M. A., Taheri, H. & Quinchia, L. A. (2011). Steady shear flow properties of wild sage (Salvia macrosiphon) seed gum as a function of concentration and temperature. Food Hydrocolloids, 25, 451-458.
Rincón, F., Muñoz, J., Ramírez, P., Galán, H. & Alfaro, M. C. (2014). Physicochemical and rheological characterization of Prosopis juliflora seed gum aqueous dispersions. Food Hydrocolloids, 35, 348-357.
Samavati, V. & Manoochehrizade, A. (2013). Polysaccharide extraction from Malva sylvestris and itsanti-oxidant activity. International Journal of Biological Macromolecules, 60, 427-436.
Seyyednejad, S. M., Koochak, H., Darabpour, E. & Motamedi, H. (2010). A survey on Hibiscus rosa- sinensis, AAlcea rosea L. and Malva neglectaWallr as antibacterial agents. Journal Asian Pacfic, 3, 351-355.
Sworn, G. (2000). Xanthan gum. In: Handbook of hydrocolloids, Edited by Phillips, G. O. & Williams P. A., Cambridge, Woodhead Publishing Limited, Cambridge, UK, pp. 103-116.
Speers, R. A. & Tung, M. A. (1986). Concentration and temperature dependence of flow behavior of xanthan gum dispersions. Journal of Food Science, 51, 96–98.
Williams, P. A. & Phillips, G. O. (2009). Introduction to food hydrocolloids. In: Handbook of Hydrocolloids, Edited by Phillips, G. O., & Williams, P. A., Woodhead Publishing Limited, Cambridge. UK, pp. 1-22.
_||_