Development and Validation of a Native Model for Hospital Information System (HIS) Acceptance Based on the Extended Unified Theory of Acceptance and Use of Technology (UTAUT2) with Emphasis on Organizational Factors in the Medical Centers of the Iranian Social Security Organization
Subject Areas : Human resource managementSeyedabolhasan Porhosayni 1 , احمدرضا کسرائی 2
1 - Doctoral student of Information Technology Management, Islamic Azad University, Central Tehran Branch
2 - گروه مدیریت صنعتی، دانشگاه آزاد اسلامی واحد تهران مرکزی، ایران
Keywords: Model of hospital information system acceptance, Development of native model, Hospital information system, Social Security Organization,
Abstract :
This study is about developing and localizing the proposed model of hospital information system acceptance in affiliated treatment centers of the Social Security Organization. The study was conducted as a cross-sectional, applied, descriptive, and analytical research. The research population in the first stage (qualitative) consisted of IT experts in the Social Security Organization (6 people), and in the second stage (quantitative), users of the hospital information system in the public treatment centers of the Social Security Organization (1125 people). The interviews were analyzed qualitatively (content analysis) and the questionnaires were analyzed descriptively, analytically (correlation) using SPSS software and structural equation modeling with Smart PLS. Based on the content analysis of the interviews, 5 new factors were identified, including user training, process transparency, clinical information confidentiality, 24-hour IT support, and system availability, which were added to the existing factors in the UTAUT2 model, including expected performance, expected effort, social effects, facilitators, motivation, value, habit, intention, and actual use (behavior). The R2 coefficient was obtained as 0.997 and 0.916 in the target variables, i.e., intention to use and actual use, respectively. Social Security Organization managers can increase the acceptance rate of HIS in their hospitals and clinics by considering these factors.
- احمدی، محمد، شهمرادی، لیلا، و رضایی، محمد. (۲۰۱۳). عوامل مؤثر بر پذیرش سیستمهای اطلاعات بیمارستانی در بیمارستانهای دولتی ایران. مجله انفورماتیک بهداشت، ۱۹(۳), ۱۸۲–۱۹۰.
- حکمت، سمیه، دهنویه، رضا، بهمرد، تینا، خواجهکاظمی، رضا، مهروی حسنّی، مریم، و پورشیهکلی، علی. (۲۰۱۶). ارزیابی سیستمهای اطلاعات بیمارستانی در ایران: مطالعه موردی استان کرمان. مجله جهانی علوم بهداشت، ۸(۱۲), ۹۵–۱۰۳.
- عبدخدا، محمد، احمدی، محمد، حسینی آقا، فریبا، پیرخانی، الهام، و فراهی، علیرضا. (۲۰۱۵). پذیرش فناوری اطلاعات در مراقبتهای بهداشتی: مدل تلفیقی. مجله انفورماتیک پزشکی، ۵۳, ۱۶۹–۱۷۸.
- Al-Qeisi, Khalid, Dennis, Chris, Hegazy, Ahmed, & Abbad, Mahmoud. (2014). How viable is the UTAUT model in a non-Western context? International Business Research, 7(10), 204–219. https://doi.org/10.5539/ibr.v7n10p204
- AlQudah, Ahmad A., Al-Emran, Mostafa, & Shaalan, Khaled. (2021). Technology acceptance in healthcare: A systematic review. Applied Sciences, 11(22), 10537. https://doi.org/10.3390/app112210537
- Alshahrani, Abdulrahman, Alasmari, Abdulaziz, & Alshahrani, Mohammed. (2019). Adoption of hospital information systems in Saudi Arabian hospitals. Journal of Medical Systems, 43(5), 123. https://doi.org/10.1007/s10916-019-1245-7
- Ammenwerth, Elske. (2019). Technology acceptance models in health informatics: TAM and UTAUT. Studies in Health Technology and Informatics, 263, 64–71. https://doi.org/10.3233/SHTI190111
- Armstrong, J. Scott, & Overton, Terry S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), 396–402. https://doi.org/10.1177/002224377701400320
- Baruch, Yehuda, & Holtom, Brooks C. (2008). Survey response rate levels and trends in organizational research. Human Relations, 61(8), 1139–1160. https://doi.org/10.1177/0018726708094863
- Baudier, Pierre, Ammi, Claudia, & De La Robertie, Claire. (2020). The impact of social influence on technology acceptance. European Journal of Information Systems, 29(4), 345–360. https://doi.org/10.1080/0960085X.2020.1769398
- Bramo, Solomon S., Desta, Abebe, & Syedda, Mohammed. (2022). Acceptance of information communication technology-based health information services: Exploring the culture in primary-level health care of South Ethiopia, using UTAUT model, ethnographic study. Digital Health, 8, 20552076221131144. https://doi.org/10.1177/20552076221131144
- Braun, Virginia, & Clarke, Victoria. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
- Chang, Yi-Ting, Chao, Chih-Ming, Yu, Chien-Wen, & Lin, Fu-Chiang. (2021). Extending the utility of UTAUT2 for hospital patients’ adoption of medical apps: Moderating effects of e-health literacy. Mobile Information Systems, 2021, 8882317. https://doi.org/10.1155/2021/8882317
- Chin, Wynne W. (1998). The partial least squares approach to structural equation modeling. In George A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). Lawrence Erlbaum Associates.
- Chong, Alvin Y. L., & Chan, F. T. S. (2012). Structural equation modeling for multi-stage analysis on radio frequency identification (RFID) diffusion in the health care industry. Expert Systems with Applications, 39(10), 8645–8654. https://doi.org/10.1016/j.eswa.2012.01.173
- Cochran, William G. (1977). Sampling techniques (3rd ed.). John Wiley & Sons.
- Cohen, Jacob. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
- Creswell, John W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). SAGE Publications.
- Creswell, John W., & Plano Clark, Vicki L. (2018). Designing and conducting mixed methods research (3rd ed.). SAGE Publications.
- Declaration of Helsinki. (2013). Ethical principles for medical research involving human subjects. World Medical Association. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
- Dewey, John. (1938). Logic: The theory of inquiry. Henry Holt and Company.
- Dwivedi, Yogesh K., Rana, Nitesh P., Jeyaraj, Anand, Clement, Michel, & Williams, Michael D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y
- Fetters, Michael D., Curry, L. A., & Creswell, John W. (2013). Achieving integration in mixed methods designs—Principles and practices. Health Services Research, 48(6pt2), 2134–2156. https://doi.org/10.1111/1475-6773.12117
- Fornell, Claes, & Larcker, David F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104
- Francis, Robert P. (2019). Examining healthcare providers’ acceptance of data from patient self-monitoring devices using structural equation modeling with the UTAUT2 model. International Journal of Healthcare Information Systems and Informatics, 14(4), 44–60. https://doi.org/10.4018/IJHISI.2019100103
- Gagnon, Marie-Pierre, Ngangue, Patrice, Payne-Gagnon, Jennifer, & Desmartis, Marie. (2016). M-Health adoption by healthcare professionals: A systematic review. Journal of the American Medical Informatics Association, 23(1), 212–220. https://doi.org/10.1093/jamia/ocv052
- Glaser, Barney G., & Strauss, Anselm L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine Publishing Company.
- Guest, Greg, Bunce, Arwen, & Johnson, Laura. (2006). How many interviews are enough? An experiment with data saturation and variability. Field Methods, 18(1), 59–82. https://doi.org/10.1177/1525822X05279903
- Hair, Joseph F., Hult, G. Tomas M., Ringle, Christian M., & Sarstedt, Marko. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). SAGE Publications.
- Hair, Joseph F., Risher, Joseph J., Sarstedt, Marko, & Ringle, Christian M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
- Hofstede, Geert. (2001). Culture's consequences: Comparing values, behaviors, institutions and organizations across nations (2nd ed.). SAGE Publications.
- Hoque, Reza, & Sorwar, Golam. (2017). Understanding factors influencing the adoption of mHealth in Bangladesh. International Journal of Medical Informatics, 104, 77–85. https://doi.org/10.1016/j.ijmedinf.2017.05.006
- Hsiao, Ching-Hsiang, Chang, Hsien-Chang, & Chen, Ruey-Fen. (2011). Critical factors for the adoption of hospital information systems. International Journal of Medical Informatics, 80(8), 563–572. https://doi.org/10.1016/j.ijmedinf.2011.04.005
- Idoga, Patrick E., Toycan, Mehmet, Nadiri, Huseyin, & Çelebi, Engin. (2019). Assessing factors militating against the acceptance and successful implementation of a cloud-based health center from the healthcare professionals’ perspective: A survey of hospitals in Benue state, Northcentral Nigeria. BMC Medical Informatics and Decision Making, 19(1), 34. https://doi.org/10.1186/s12911-019-0747-5
- Ifinedo, Princely. (2016). The moderating effects of age and experience on the acceptance of hospital information systems. International Journal of Healthcare Information Systems and Informatics, 11(4), 1–20. https://doi.org/10.4018/IJHISI.2016100101
- James, William. (1907). Pragmatism: A new name for some old ways of thinking. Longmans, Green, and Co.
- Kim, Seong, & Park, Hee-Ah. (2012). Factors affecting the adoption of electronic health records in South Korean hospitals. International Journal of Medical Informatics, 81(9), 629–638. https://doi.org/10.1016/j.ijmedinf.2012.05.013
- Kock, Ned. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration, 11(4), 1–10. https://doi.org/10.4018/ijec.2015100101
- Landis, James R., & Koch, Gary G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310
- Lawshe, Charles H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
- Lincoln, Yvonna S., & Guba, Egon G. (1985). Naturalistic inquiry. SAGE Publications.
- Maillet, Éric, Mathieu, Luc, & Sicotte, Caroline. (2015). User acceptance of health information technology in Canadian hospitals. Health Informatics Journal, 21(2), 89–102. https://doi.org/10.1177/1460458213501367
- Morgan, David L. (2007). Paradigms lost and pragmatism regained: Methodological implications of combining qualitative and quantitative methods. Journal of Mixed Methods Research, 1(1), 48–76. https://doi.org/10.1177/2345678906292462
- Morgan, David L. (2014). Pragmatism as a paradigm for social research. Qualitative Inquiry, 20(8), 1045–1053. https://doi.org/10.1177/1077800413513733
- Morse, Janice M. (1991). Approaches to qualitative-quantitative methodological triangulation. Nursing Research, 40(2), 120–123. https://doi.org/10.1097/00006199-199103000-00014
- Nunnally, Jum C., & Bernstein, Ira H. (1994). Psychometric theory (3rd ed.). McGraw-Hill.
- O'Cathain, Angela, Murphy, Elizabeth, & Nicholl, Jon. (2008). The quality of mixed methods studies in health services research. Journal of Health Services Research & Policy, 13(2), 92–98. https://doi.org/10.1258/jhsrp.2007.007074
- Patton, Michael Q. (2015). Qualitative research and evaluation methods (4th ed.). SAGE Publications.
- Podsakoff, Philip M., & Organ, Dennis W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4), 531–544. https://doi.org/10.1177/014920638601200408
- Podsakoff, Philip M., MacKenzie, Scott B., Lee, Jeong-Yeon, & Podsakoff, Nathan P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
- Ringle, Christian M., Wende, Sven, & Becker, Jan-Michael. (2015). SmartPLS 3. SmartPLS GmbH. http://www.smartpls.com
- Rorty, Richard. (1999). Philosophy and social hope. Penguin Books.
- Schafer, Joseph L. (1999). Multiple imputation: A primer. Statistical Methods in Medical Research, 8(1), 3–15. https://doi.org/10.1177/096228029900800102
- Tabachnick, Barbara G., & Fidell, Linda S. (2013). Using multivariate statistics (6th ed.). Pearson Education.
- Tashakkori, Abbas, & Teddlie, Charles. (2010). SAGE handbook of mixed methods in social & behavioral research (2nd ed.). SAGE Publications.
- Tenenhaus, Michel, Vinzi, Vincenzo E., Chatelin, Yves-Michel, & Lauro, Christophe. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205. https://doi.org/10.1016/j.csda.2004.03.005
- Venkatesh, Viswanath, Morris, Michael G., Davis, Gordon B., & Davis, Fred D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
- Venkatesh, Viswanath, Thong, James Y. L., & Xu, Xin. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412
- Wetzels, Martin, Odekerken-Schröder, Gaby, & Van Oppen, Cornelis. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 33(1), 177–195. https://doi.org/10.2307/20650284