A Review of Simulator Platforms for Quantum Key Distribution Systems
Subject Areas : Electrical and Computer Engineering
1 - Faculty of Applied Sciences, Malek-Ashtar University of Technology, Isfahan, Iran
Keywords: Quantum cryptography, Simulation of quantum key distribution (QKD), Quantum optics, Teaching quantum mechanics, Quantum game,
Abstract :
One of the crucial methods to achieve guaranteed secure communication is the implementation of Quantum Key Distribution (QKD). In fact, QKD, as an interdisciplinary security technology, utilizes the principles of quantum mechanics to share a one-time-pad encryption key. From an architectural perspective, QKD systems are complex and costly physical systems composed of hardware components (including optical, laser, electro-optical, electronic, etc.) and software elements. The design and analysis of these systems require skills and expertise in various fields such as quantum optics, information theory, electrical engineering (electronics and telecommunications), and computer science. One of the fundamental needs related to the practical implementation of a QKD system is using a simulation platform. More precisely, conducting simulations before practical implementation plays a significant role in analyzing and identifying model bottlenecks, mitigating risks, increasing speed, and reducing setup costs. Additionally, by employing simulations, the selection of optimal subsystems is also facilitated. This article presents the requirements and considerations for a mathematical model and a suitable simulation platform for QKD systems. A comprehensive review of various computer software, programming languages, packages, and toolboxes for simulating QKD systems is conducted. The most important virtual labs and quantum games suitable for the education and design of QKD systems are discussed. The advantages and limitations of each laboratory are stated and compared with each other.
[1] C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Theoretical Computer Science, vol. 560, no. 1, pp. 7–11, Dec. 2014, doi: 10.1016/j.tcs.2014.05.025.
[2] A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Physical Review Letters, vol. 67, no. 6, pp. 661–663, Aug. 1991, doi: 10.1103/physrevlett.67.661.
[3] C. H. Bennett, “Quantum Cryptography Using any Two Nonorthogonal States,” Physical Review Letters, vol. 68, no. 21, pp. 3121–3124, May 1992, doi: 10.1103/physrevlett.68.3121.
[4] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and Simple One-Way Quantum Key Distribution,” Applied Physics Letters, vol. 87, no. 19, pp. 41081–41083, Nov. 2005, doi: 10.1063/1.2126792.
[5] V. Zapatero, W. Wang, and M. Curty, “A Fully Passive Transmitter for Decoy-State Quantum Key Distribution,” Quantum Science and Technology, vol. 8, no. 2, pp. 25014–25032, Feb. 2023, doi: 10.1088/2058-9565/acbc46.
[6] S. Dong, S. Mi, Q. Hou, Y. Huang, J. Wang, Y. Yu, Z. Wei, Z. Zhang, and J. Fang, “Decoy State Semi-Quantum Key Distribution,” EPJ Quantum Technology, vol. 10, no. 1, pp. 1–15, May 2023, doi: 10.1140/epjqt/s40507-023-00175-0.
[7] H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional Security of Practical Quantum Key Distribution,” European Physical Journal D, vol. 41, no. 3, pp. 599–627, Mar. 2007, doi: 10.1140/epjd/e2007-00010-4.
[8] R. Chaturvedi, A. Misra, S. Bitragunta, A. Bhatia, K. Tiwari, “Simultaneous Quantum Information and Power Transfer-Based Green QKD Receiver Architectures,” in 2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS), 2024, pp. 782–785, doi: 10.1109/COMSNETS59351.2024.10427492.
[9] G. Guarda, D. Ribezzo, D. Salvoni, C. Bruscino, P. Ercolano, M. Ejrnaes, and L. Parlato, “Decoy-State Quantum Key Distribution Over Long-Distance Optical Fiber,” Quantum Computing, Communication, and Simulation IV, vol. 12911, no. 1, pp. 120–125, Mar. 2024, doi: 10.1117/12.3003698.
[10] Y. Liu, W. J. Zhang, C. Jiang, J. P.Chen, C. Zhang, W. X. Pan, and D. Ma, “Experimental Twin-Field Quantum Key Distribution Over 1000 km Fiber Distance,” Physical Review Letters, vol. 130, no. 21, pp. 210801–210847, May 2023, doi: 10.1103/physrevlett.130.210801.
[11] M. Zahidy, D. Ribezzo, C. D. Lazzari, I. Vagniluca, N. Biagi, R. Müller, and T. Occhipinti, “Practical High-Dimensional Quantum Key Distribution Protocol Over Deployed Multicore Fiber,” Nature Communications, vol. 15, no. 1, pp. 1651–1656, Feb. 2024, doi: 10.1038/s41467-024-45876-x.
[12] M. M. Hassan, K. Reaz, A. Green, N. Crum, and G. Siopsis, “Experimental Free-Space Quantum Key Distribution Over a Turbulent High-Loss Channel,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), 2023, pp. 1182–1186, doi: 10.1109/qce57702.2023.00133.
[13] C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding,” Physical Review Letters, vol. 98, no. 1, pp. 10505–10509, Jan. 2007, doi: 10.1103/physrevlett.98.010505.
[14] Y. Liu, T. Y. Chen, J. Wang, W. Q. Cai, X. Wan, L. K. Chen, J. H. Wang, S. B. Liu, H. Liang, L. Yang, and C. Z. Peng, “Decoy-State Quantum Key Distribution with Polarized Photons Over 200 km,” Optics Express, vol. 18, no. 8, pp. 8587–8594, Apr. 2010, doi: 10.1364/oe.18.008587.
[15] P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single Photon Interference in 10 km Long Optical Fibre Interferometer,” Electronics Letters, vol. 29, no. 7, pp. 634–635, Apr. 1993, doi: 10.1049/el19930424.
[16] A. M. Toonabi, M. D. Darareh, and S. Janbaz, “A Two-Dimensional Quantum Key Distribution Protocol Based on Polarization-Phase Encoding,” International Journal of Quantum Information, vol. 17, no. 7, pp. 1950058–1950078, Oct. 2019, doi: 10.1142/s0219749919500588.
[17] A. M. Toonabi, M. D. Darareh, and S. Janbaz, “High-Dimensional Quantum Key Distribution Using Polarization-Phase Encoding: Security Analysis,” International Journal of Quantum Information, vol. 18, no. 06, pp. 2050031–2050055, Sep. 2020, doi: 10.1142/s0219749920500318.
[18] A. M. Toonabi and M. D. Darareh, “Introducing a Decoy-State Version of the High-Dimensional Polarization-Phase (PoP) Quantum Key Distribution Protocol and Explaining its Implementation,” Electronic and Cyber Defense, vol. 12. no. 2, pp. 1–9, Sep. 2024, doi: ECDJ/2310/1531.
[19] Q. Li, D. Le, X. Wu, X. Niu, and H. Guo, “Efficient Bit Sifting Scheme of Post-Processing in Quantum Key Distribution,” Quantum Information Processing, vol. 14, no. 1, pp. 3785–3811, Oct. 2015, doi: 10.1007/s11128-015-1035-8.
[20] E. Kiktenko, A. Trushechkin, Y. Kurochkin, and A. Fedorov, “Post-Processing Procedure for Industrial Quantum Key Distribution Systems,” Journal of Physics: Conference Series, vol. 741, no. 1, pp. 12081–12087, Aug. 2016, doi: 10.1088/1742-6596/741/1/012081.
[21] C. Portmann and R. Renner, “Security in Quantum Cryptography,” Reviews of Modern Physics, vol. 94, no. 2, pp. 25008–25070, Apr. 2022, doi: 10.1103/revmodphys.94.025008.
[22] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Physical Review Letters, vol. 85, no. 6, pp. 1330–1333, Aug. 2000, doi: 10.1103/physrevlett.85.1330.
[23] S. Sun and A. Huang, “A Review of Security Evaluation of Practical Quantum Key Distribution System,” Entropy, vol. 24, no. 2, pp. 260–278, Feb. 2022, doi: 10.3390/e24020260.
[24] N. Jain, H. M. Chin, H. Mani, C. Lupo, D. S. Nikolic, A. Kordts, and S. Pirandola, “Practical Continuous-Variable Quantum Key Distribution with Composable Security,” Nature Communications, vol. 13, no. 1, pp. 4740–4747, Aug. 2022, doi: 10.1038/s41467-022-32161-y.
[25] Z. Li and K. Wei, “Improving Parameter Optimization in Decoy-State Quantum Key Distribution,” Quantum Engineering, vol. 2022, no. 1, pp. 9717591–9717599, Feb. 2022, doi: 10.1155/2022/9717591.
[26] C. X. Zhang, D. Wu, P. W. Cui, J. C. Ma, Y. Wang, and J. M. An, “Research Progress in Quantum Key Distribution,” Chinese Physics B, vol. 32, no. 12, pp. 124207–124210, Sep. 2023, doi: 10.1088/1674-1056/acfd16.
[27] V. Zapatero, T. V. Leent, R. A. Friedman, W. Z. Liu, Q. Zhang, H. Weinfurter, and M. Curty, “Advances in Device-Independent Quantum Key Distribution,” npj Quantum Information, , vol. 9, no. 1, pp. 10–20, Feb. 2023, doi: 10.1038/s41534-023-00684-x.
[28] W. Li, L. Zhang, H. Tan, Y. Lu, S. K. Liao, J. Huang, and H. Li, “High-Rate Quantum Key Distribution Exceeding 110 Mb s–1,” Nature Photonics, vol. 17, no. 5, pp. 416–421, May 2023, doi: 10.1038/s41566-023-01166-4.
[29] C. G. Cassandras and S. Lafortune, “Introduction to Discrete-Event Simulation,” in Introduction to Discrete Event Systems, Springer International Publishing, 2021, pp. 593–651, doi: 10.1007/978-3-030-72274-6_10.
[30] H. Qiao and C. Xiao, “Simulation of BB84 Quantum Key Distribution in Depolarizing Channel,” in Proceedings of 14th Youth Conference on Communication, 2009, pp. 123–129, doi: 978-1-935068-01-3 © 2009 SciRes.
[31] G. Tóth, “QUBIT4MATLAB V3. 0: A Program Package for Quantum Information Science and Quantum Optics for MATLAB,” Computer Physics Communications, vol. 179, no. 6, pp. 430–437, Sep. 2008, doi: 10.1016/j.cpc.2008.03.007.
[32] R. K. Sinha, M. Mishra, and S. S. Sahu, “Quantum Key Distribution: Simulation of BB84 Protocol in C,” International Journal of Electronics, Electrical and Computational System, vol. 6, no. 1, pp. 661–666, Aug. 2017, doi: IJEECS/6.1/2017.661-666.
[33] K. Manish and R. C. Poonia, “Simulation of BB84 and Proposed Protocol for Quantum Key Distribution,” Journal of Statistics and Management Systems, vol. 21, no. 4, pp. 661–666, Jul. 2018, doi:10.1080/09720510.2018.1475075.
[34] T. Jones, A. Brown, I. Bush, and S. Benjamin, “QuEST and High Performance Simulation of Quantum Computers,” Scientific reports, vol. 9, no.1, pp. 10736–10747, Jul. 2019, doi: 10.1038/s41598-019-47174-9.
[35] J. D. Morris, D. D. Hodson, M. R. Grimaila, D. R. Jacques, and G. Baumgartner, “Towards the Modeling and Simulation of Quantum Key Distribution Systems,” International Journal of Emerging Technology and Advanced Engineering, vol. 4, no. 2, pp. 829–838, Feb. 2014, doi: 2250-2459/2014. 829-838.
[36] M. Mehic, O. Maurhart, S. Rass, and M. Voznak, “Implementation of Quantum Key Distribution Network Simulation Module in the Network Simulator NS-3,” Quantum Information Processing, vol. 16, no. 10, pp. 1–23, Oct. 2017, doi: 10.1007/s11128-017-1702-z.
[37] B. Bartlett, “A Distributed Simulation Framework for Quantum Networks and Channels,” ArXiv preprint, Aug. 2018, doi: arXiv: 1808.07047.
[38] A. Feito, “Quantavo: a Maple Toolbox for Linear Quantum Optics,” ArXiv preprint, Jun. 2008, doi: arXiv: 0806.2171.
[39] F. Tabakin, “Model Dynamics for Quantum Computing,” Annals of Physics, vol. 383, no. 1, pp. 33–78, Aug. 2017, doi: 10.1016/j.aop.2017.04.013.
[40] S. Shafi, M. S. Monir, and M. S. Rahman, “Numerical Modeling and Simulation of Quantum Key Distribution Systems under Non-Ideal Conditions,” in 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), 2017, pp. 38–42, doi: 978-1-5386-3374-8/17.
[41] J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP: an Open-Source Python Framework for the Dynamics of Open Quantum Systems,” Computer physics communications, Vol. 183, no. 8, pp. 1760–1772, Aug. 2012, doi: 10.1016/j.cpc.2012.02.021.
[42] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi, and J. M. Arrazola, “PennyLane: Automatic Differentiation of Hybrid Quantum-Classical Computations,” ArXiv preprint, Nov. 2018, doi: 10.48550/arXiv.1811.04968.
[43] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weedbrook, “Strawberry Fields: a Software Platform for Photonic Quantum Computing,” Quantum, vol. 3, no. 1, pp. 129–156, Mar. 2019, doi: 10.22331/q-2019-03-11-129.
[44] H. Silvério, S. Grijalva, C. Dalyac, L. Leclerc, P. J. Karalekas, N. Shammah, M. Beji, L. P. Henry, and L. Henriet, “Pulser: an Open-Source Package for the Design of Pulse Sequences in Programmable Neutral-Atom Arrays,” Quantum, vol. 6, no. 1, pp. 629–650, Jan. 2022, doi: 10.22331/q-2022-01-24-629.
[45] M. Paltenghi and M. Pradel, “Bugs in QQuantum Computing Platforms: an Empirical Study,” Proceedings of the ACM on Programming Languages, vol. 6, no. OOPSLA1, pp. 1–27, Apr. 2022, doi: 10.1145/3527330.
[46] J. Luo, P. Zhao, Z. Miao, S. Lan, and J. Zhao, “A Comprehensive Study of Bug Fixes in Quantum Programs,” in 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 2022, pp. 1239–1246, doi: 10.1109/saner53432.2022.00147.
[47] P. Migdał, K. Jankiewicz, P. Grabarz, C. Decaroli, and P. Cochin, “Visualizing Quantum Mechanics in an Interactive Simulation – Virtual Lab by Quantum Flytrap,” Optical Engineering, vol. 61, no. 8, pp. 81808–81826, Aug. 2022, doi: 10.1117/1.oe.61.8.081808.
[48] B. R. Lacour, M. Maynard, P. Shroff, G. Ko, and E. Ellis, “The Virtual Quantum Optics Laboratory,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp. 677–687, doi: 10.1109/QCE53715.2022.00091.
[49] B. R. La Cour and M. C. Williamson, “Emergence of the Born Rule in Quantum Optics,” Quantum, vol. 4, no. 1, pp. 350–379, Oct. 2020, doi: 10.22331/q-2020-10-26-350.
[50] B. R. Lacour and T. W. Yudichak, “Entanglement and Impropriety,” Quantum Studies: Mathematics and Foundations, vol. 8, no. 3, pp. 307–314, Aug. 2021, doi: 10.1007/s40509-021-00246-w.
[51] B. R. Lacour and T. W. Yudichak, “Classical Model of a Delayed-Choice Quantum Eraser,” Physical Review A, vol. 103, no. 6, pp. 62213–62225, Jun. 2021, doi: 10.1103/physreva.103.062213.
[52] Z. C. Seskir, P. Migdał, C. Weidner, A. Anupam, N. Case, N. Davis, C. Decaroli, İ. Ercan, C. Foti, P. Gora, and K. Jankiewicz, “Quantum Games and Interactive Tools for Quantum Technologies Outreach and Education,” Optical Engineering, vol. 61, no. 8, pp. 81809–81809, Aug. 2022, doi: 10.1117/1.oe.61.8.081809.
[53] J. R. Johansson, P. D. Nation, and F. Nori, “QuTiP 2: A Python Framework for the Dynamics of Open Quantum Systems,” Computer Physics Communications, vol. 184, no. 4, pp. 1234–1240, Aug. 2013, doi: 10.1016/j.cpc.2012.11.019.