Ecomorphological and biochemical diversity of Artemisia haussknechtii Boiss. populations in in various habitats across central and western Iran.
Subject Areas : Medicinal PlantsMilad Javanmard 1 , Hassanaliآ Naghdi Badi 2 , Ali Mohammadi Torkashvand 3 , Ali Mehrafarin 4 , Babak Bahreininejad 5
1 - Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran
3 - Professor, Islamic Azad University, Research Sciences Unit, Tehran
4 - Medicinal Plants Research Center, Shahed University, Tehran, Iran
5 - Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran
Keywords: Phytochemical diversity, Artemisia haussknechtii, Population, Proline, Essential oil, Principal component analysis,
Abstract :
Artemisia haussknechtii is one of the medicinal and valuable plants native to Iran and belongs to Artemisia, which few studies have been done on its populations. This study was conducted in order to investigate the ecological and phytochemical diversity of A. haussknechtii. 17 populations of this species were collected from the central and western regions of Iran, which included 5 provinces. Climatic characteristics, soil characteristics, morpho-physiological traits were evaluated in populations. According to principal component analysis (PCA) and morpho-phytochemical traits, the populations were separated. The first three axes explained 76.01% of the total variation. The first component was contributed by some traits such as plant height, canopy diameter and area with about 36.3% of total variation. A. haussknechtii populations were classified into three main population groups 2, 7 and 8 based on cluster analysis. The first group included populations A8, A9, A10, A14, A15, A16 and A17, in the second group there were populations A2, A3, A4, A5, A6, A11, A12 and A13 and in the third group there were populations A1 and A7. The results showed that height of the plant had an inverse relationship with the height above sea level. Also, leaf length and width were negatively correlated with average annual temperature and wind speed, but positively correlated with nitrogen and soil organic matter. Proline had a direct relationship with average annual temperature and an inverse relationship with soil organic matter and nitrogen. The amount of essential oil percentage had a positive relationship with the average annual total of sunny hours and a negative relationship with the humidity of the soil saturation percantage.The A. haussknechtii populations were adapted to different environmental conditions with morphological and phytochemical changes such as production of secondary metabolites and proline.
1. Aali, K. A., Parsinejad, M., & Rahmani, B. (2009). Estimation of Saturation Percentage of Soil Using Multiple Regression, ANN, and ANFIS Techniques. Comput. Inf. Sci., 2(3), 127-136.
2. Abad, M. J., Bedoya, L. M., Apaza, L., & Bermejo, P. (2012). The Artemisia L. genus: a review of bioactive essential oils. Molecules, 17(3), 2542-2566.
3. Abbaspour, J., & Ehsanpour, A. A. (2020). Sequential expression of key genes in proline, glycine betaine and artemisinin biosynthesis of Artemisia aucheri Boiss. using salicylic acid under in vitro osmotic stress. Biologia, 75, 1251-1263.
4. Agrawal, S. B., & Jaiswal, D. (2018). Impact of light stress on plant based medicinally active compounds. International Journal of Plant and Environment, 4(02), 50-59.
5. Baj, T., Sieniawska, E., Kowalski, R., Wesolowski, M., & Ulewicz-Magulska, B. (2015). Effectiveness of the deryng and clevenger-type apparatus in isolation of various types of components of essential oil from the Mutelina purpurea Thell. flowers. Acta Pol. Pharm, 72, 507-515.
6. Bates, L. S., Waldren, R. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.
7. Ben Neriah, A., Assouline, S., Shavit, U., & Weisbrod, N. (2014). Impact of ambient conditions on evaporation from porous media. Water Resources Research, 50(8), 6696-6712.
8. Bhaskara, G. B., Yang, T. H., & Verslues, P. E. (2015). Dynamic proline metabolism: importance and regulation in water limited environments. Frontiers in Plant Science, 6, 484.
9. Bora, K. S., & Sharma, A. (2011). The genus Artemisia: a comprehensive review. Pharmaceutical Biology, 49(1), 101-109.
10. Boudreau, A., Richard, A. J., Harvey, I., & Stephens, J. M. (2022). Artemisia scoparia and metabolic health: untapped potential of an ancient remedy for modern use. Frontiers in endocrinology, 12, 727061.
11. Cramer, M. D., Hawkins, H. J., & Verboom, G. A. (2009). The importance of nutritional regulation of plant water flux. Oecologia, 161, 15-24.
12. Fasina, O. O., & Colley, Z. (2008). Viscosity and specific heat of vegetable oils as a function of temperature: 35 C to 180 C. International journal of food properties, 11(4), 738-746.
13. Göring, H., & Thien, B. H. (1979). Influence of nutrient deficiency on proline accumulation in the cytoplasm of Zea mays L. seedlings. Biochemie und Physiologie der Pflanzen, 174(1), 9-16.
14. Hashemi, S. M., & Safavi, S. A. (2012). Control of Three Stored-Product Beetles with Artemisia haussknechtii (Boiss) (Asteraceae) Essential Oil. Ecologia Balkanica, 4(2).
15. Hashemi, S. M., & Safavi, S. A. (2013). Toxicity of essential oil from Artemisia haussknechtii (Boiss), to larvae and adults of Tribolium confusum (Jacquelin du Val). Biharean Biol, 7(2), 57-60.
16. Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant signaling & behavior, 7(11), 1456-1466.
17. Iranshahi, M., Emami, S. A., & MAHMOUD, S. M. (2007). Detection of sesquiterpene lactones in ten Artemisia species population of Khorasan provinces.
18. Javanmard, M., & Asadi-Gharneh, H. A. (2016). Study of quantitative and qualitative traits of fatty acids in dog rose (Rosa canina L.) ecotypes from Isfahan region of Iran. Iranian Journal of Horticultural Science, 47(3).
19. Khanom, S., Saha, B. K., Islam, M. T., & Chowdhury, M. A. H. (2008). Influence of organic and inorganic fertilizers on the growth, leaf yield, chlorophyll and protein contents of stevia grown in different soil types. Progressive Agriculture, 19(1), 23-31.
20. Konowalik, K., & Kreitschitz, A. (2012). Morphological and anatomical characteristics of Artemisia absinthium var. absinthium and its Polish endemic variety A. absinthium var. calcigena. Plant systematics and evolution, 298, 1325-1336.
21. Mao, L., Chen, S., Zhang, J., & Zhou, G. (2018). Altitudinal patterns of maximum plant height on the Tibetan Plateau. Journal of Plant Ecology, 11(1), 85-91.
22. Leghari, S. J., Wahocho, N. A., Laghari, G. M., HafeezLaghari, A., MustafaBhabhan, G., HussainTalpur, K. ... & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10(9), 209-219.
23. Leigh, A., Sevanto, S., Close, J. D., & Nicotra, A. B. (2017). The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? Plant, cell & environment, 40(2), 237-248.
24. Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology. (Vol. 148, pp. 350-382). Academic Press.
25. Luo, H., He, W., Li, D., Bao, Y., Riaz, A., Xiao, Y. ... & Liu, C. (2020). Effect of methyl jasmonate on carotenoids biosynthesis in germinated maize kernels. Food chemistry, 307, 125525.
26. Maya-García, R., Torres-Miranda, A., Cuevas-Reyes, P., & Oyama, K. (2020). Morphological differentiation among populations of Quercus elliptica Neé (Fagaceae) along an environmental gradient in Mexico and Central America. Botanical Sciences, 98(1), 50-66.
27. Mirhaji, S.T., Jalili, A., Jafari, M., Akbarzadeh, M., & Farzaneh, Z. (2001). Ecological comparision of Artemisia species in Semnan Province. PajouheshVa-Sazandegi, 14 (3), 95 - 102.
28. Momin, R. K., & Kadam, V. B. (2011). Determination of ash values of some medicinal plants of genus Sesbania of Marathwada region in Maharashtra. Journal of phytology, 3(12).
29. Mozaffarian, V. (2008). Flora of Iran no. 59. Compositae: Anthemideae and Echinopeae tribes. Tehran. pp.448. Research Institute of Forests and Rangeland Publishers.
30. Mozaffarian, V. (2012). Identification of medicinal and aromatic plants of Iran, pp.1444. Farhang Moaser Publishers.Tehran. First edition
31. Nicotra, A. B., Leigh, A., Boyce, C. K., Jones, C. S., Niklas, K. J., Royer, D. L., & Tsukaya, H. (2011). The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 38(7), 535-552.
32. Nigam, M., Atanassova, M., Mishra, A. P., Pezzani, R., Devkota, H. P., Plygun, S. ... & Sharifi-Rad, J. (2019). Bioactive compounds and health benefits of Artemisia species. Natural product communications, 14(7), 1934578X19850354.
33. Pichersky, E., Noel, J. P., & Dudareva, N. (2006). Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science, 311(5762), 808-811.
34. Prins, C. L., Freitas, S. D. P., Gomes, M. D. M. D. A., Vieira, I. J. C., & Gravina, G. D. A. (2013). Citral accumulation in Cymbopogon citratus plant as influenced by N6-benzylaminopurine and light intensity. Theoretical and Experimental Plant Physiology, 25, 159-165.
35. Rabie, M., Jalili, A., Asri, Y., & Hamzehee, B. (2009). Population variation of Artemisia sieberi in Iran based on quantitative characters of leaf and seed and their relationships with habitat features. Rostaniha, 10(1), 51-67.
36. Ramezani Nowrozani, F., & Ghorbani Ranjbary, A. (2018). Effects of the hydroalcoholic extract of Artemisia khorassanica on wound healing potential in mice. Comparative Clinical Pathology, 27(4), 1079-1083.
37. Ramkhelawan, E., & Brathwaite, R. A. (1990). Leaf area estimation by non-destructive methods in sour orange (Citrus aurantium L.). Tropical Agriculture, 67(3), 203-206.
38. Rathke, G. W., Behrens, T., & Diepenbrock, W. (2006). Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agriculture, ecosystems & environment, 117(2-3), 80-108.
39. Rawal, A., Chakraborty, S., Li, B., Lewis, K., Godoy, M., Paulette, L., & Weindorf, D. C. (2019). Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer. Geoderma, 338, 375-382.
40. Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277.
41. Schymanski, S. J., & Or, D. (2016). Wind increases leaf water use efficiency. Plant, Cell & Environment, 39(7), 1448-1459.
42. Sereshti, H., & Samadi, S. (2007). Comparison of hydrodistillation-headspace liquid phase microextraction techniques with hydrodistillation in determination of essential oils in Artemisia Haussknechtii Boiss. Journal of Science University of Tehran (JSUT), 33 (2), 7-17.
43. Shahrivari, S., Alizadeh, S., Ghassemi-Golezani, K., & Aryakia, E. (2022). A comprehensive study on essential oil compositions, antioxidant, anticholinesterase and antityrosinase activities of three Iranian Artemisia species. Scientific Reports, 12(1), 7234.
44. Shuorvazdi, A., Mohammadi, S. A., Norozi, M., & Sadeghzadeh, B. (2014). Molecular analysis of genetic diversity and relationships of barley landraces based on microsatellite markers. Plant Genetic Researches, 1(1), 51-64.
45. Spormann, S., Nadais, P., Sousa, F., Pinto, M., Martins, M., Sousa, B. ... & Soares, C. (2023). Accumulation of Proline in Plants under Contaminated Soils—Are We on the Same Page? Antioxidants, 12(3), 666.
46. Stevović, S., Ćalić-Dragosavac, D., Mikovilović, V. S., Zdravković-Korać, S., Milojević, J., & Cingel, A. (2011). Correlation between environment and essential oil production in medical plants. Adv. Environ. Biol, 5(2), 465-468.
47. Tan, R. X., Zheng, W. F., & Tang, H. Q. (1998). Biologically active substances from the genus Artemisia. Planta medica, 64(04), 295-302.
48. Tarighaleslami, M., Zarghami, R., Boojar, M. M. A., & Oveysi, M. (2012). Effects of drought stress and different nitrogen levels on morphological traits of proline in leaf and protein of corn seed (Zea mays L.). American-Eurasian Journal of Agricultural and Environmental Sciences, 12, 49-56.
49. Tian, T., Wu, L., Henke, M., Ali, B., Zhou, W., & Buck-Sorlin, G. (2017). Modeling allometric relationships in leaves of young rapeseed (Brassica napus L.) grown at different temperature treatments. Frontiers in Plant science, 8, 313.
50. Tunçtürk, M., Tunçtürk, R., Yildirim, B., & Çiftçi, V. (2011). Changes of micronutrients, dry weight and plant development in canola (Brassica napus L.) cultivars under salt stress. African Journal of Biotechnology, 10(19), 3726-3730.
51. Valladares, F., Gianoli, E., & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New phytologist, 176(4), 749-763.
52. Wang, X., Sun, J., Wang, S., Sun, T., & Zou, L. (2023). Salicylic acid promotes terpenoid synthesis in the fungi Sanghuangporus baumii. Microbial Biotechnology, 16(6), 1360-1372.
53. Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762.
54. Yazdi Far, S., Naghdi Badi, H., Mehrafarin, A., Kalateh Jari, S., & Danaee, E. (2022). Evaluation of diversity of eco morphological and phytochemical traits of Artemisia sieberi Besser. in different habitats of Qom province in Iran. Eco-phytochemical Journal of Medicinal Plants, 10(1), 27-46.
55. Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., & Noland, T. L. (2000). Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation. Remote Sensing of Environment, 74(3), 582-595.
56. Zhan, X., Chen, Z., Chen, R., & Shen, C. (2022). Environmental and genetic factors involved in plant protection-associated secondary metabolite biosynthesis pathways. Frontiers in Plant Science, 13, 877304.
57. Zhang, F., Wan, X., Zheng, Y., Sun, L., Chen, Q., Zhu, X. ... & Liu, M. (2014). Effects of nitrogen on the activity of antioxidant enzymes and gene expression in leaves of Populus plants subjected to cadmium stress. Journal of Plant Interactions, 9(1), 599-609.