New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces
Subject Areas : Functional analysisF. Aboutorabi Goudarzi 1 , M. S. Asgari 2
1 - Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
[1] M. S. Asgari, G. Kavian, Expansion of Bessel and g-Bessel sequences to dual frames and dual g-frames, J. Linear and Topological Algebra, Vol. 02, No. 01, 2013, 51- 57
[2] M. S. Asgari, New characterizations of fusion frames (frames of subspaces), Proc. Indian Acad. Sci. (Math. Sci.) 119 No. 3 (2009), 1-14.
[3] M. S. Asgari, On the stability of fusion frames (frames of subspaces), Acta Math. Sci. Ser. B, 31(4), (2011), 1633-1642.
[4] M. S. Asgari, Operator-valued bases on Hilbert spaces, J. Linear and Topological Algebra, Vol. 02, No. 04, (2013), 201-218.
[5] P. G. Casazza and G. Kutyniok, Frames of subspaces, in Wavelets, Frames and Operator Theory (College Park, MD, 2003), Contemp. Math. 345, Amer. Math. Soc. Providence, RI, 2004, 87-113.
[6] O. Christensen, An Introduction to frames and Riesz Bases, Birkhauser, Boston, 2003.
[7] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27(1986), 1271-1283.
[8] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72,(2), (1952), 341-366.
[9] M. Fornasier, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl. 289 (2004), 180- 199.
[10] P. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl. 333 (2007), 871-879.
[11] J.R. Holub, Pre-frame operators, Besselian frames and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc. 122 (1994) 779-785.
[12] V. Kaftal, D. R. Larson and Sh. Zhang, Operator-valued frames, Trans. Amer. Math. Soc. 361 (2009), 6349- 6385.
[13] S. S. Karimizad, G-frames, g-orthonormal bases and g-Riesz bases, J. Linear and Topological Algebra, Vol. 02, No. 01, 2013, 25-33.
[14] W. Rudin, Functional Analysis, McGrawHill. Inc, New York, (1991).
[15] W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. (2006), 322, 437-452.
[16] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 2001.