New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces
الموضوعات :F. Aboutorabi Goudarzi 1 , M. S. Asgari 2
1 - Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
الکلمات المفتاحية: Fusion Frame, Riesz fusion basis, Exact fusion frame, Orthonormal fusion basis,
ملخص المقالة :
In this paper we investigate a new notion of bases in Hilbert spaces and similarto fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introducea new definition of fusion dual sequence associated with a fusion basis and show that theoperators of a fusion dual sequence are continuous projections. Next we define the fusionbiorthogonal sequence, Bessel fusion basis, Hilbert fusion basis and obtain some characterizations of them. we study orthonormal fusion systems and Riesz fusion bases for Hilbertspaces. we consider the stability of fusion bases under small perturbations. We also generalized a result of Paley-Wiener [16] to the situation of fusion basis.
[1] M. S. Asgari, G. Kavian, Expansion of Bessel and g-Bessel sequences to dual frames and dual g-frames, J. Linear and Topological Algebra, Vol. 02, No. 01, 2013, 51- 57
[2] M. S. Asgari, New characterizations of fusion frames (frames of subspaces), Proc. Indian Acad. Sci. (Math. Sci.) 119 No. 3 (2009), 1-14.
[3] M. S. Asgari, On the stability of fusion frames (frames of subspaces), Acta Math. Sci. Ser. B, 31(4), (2011), 1633-1642.
[4] M. S. Asgari, Operator-valued bases on Hilbert spaces, J. Linear and Topological Algebra, Vol. 02, No. 04, (2013), 201-218.
[5] P. G. Casazza and G. Kutyniok, Frames of subspaces, in Wavelets, Frames and Operator Theory (College Park, MD, 2003), Contemp. Math. 345, Amer. Math. Soc. Providence, RI, 2004, 87-113.
[6] O. Christensen, An Introduction to frames and Riesz Bases, Birkhauser, Boston, 2003.
[7] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27(1986), 1271-1283.
[8] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72,(2), (1952), 341-366.
[9] M. Fornasier, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl. 289 (2004), 180- 199.
[10] P. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl. 333 (2007), 871-879.
[11] J.R. Holub, Pre-frame operators, Besselian frames and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc. 122 (1994) 779-785.
[12] V. Kaftal, D. R. Larson and Sh. Zhang, Operator-valued frames, Trans. Amer. Math. Soc. 361 (2009), 6349- 6385.
[13] S. S. Karimizad, G-frames, g-orthonormal bases and g-Riesz bases, J. Linear and Topological Algebra, Vol. 02, No. 01, 2013, 25-33.
[14] W. Rudin, Functional Analysis, McGrawHill. Inc, New York, (1991).
[15] W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. (2006), 322, 437-452.
[16] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 2001.