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Abstract. In this paper we investigate a new notion of bases in Hilbert spaces and similar
to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce
a new definition of fusion dual sequence associated with a fusion basis and show that the
operators of a fusion dual sequence are continuous projections. Next we define the fusion
biorthogonal sequence, Bessel fusion basis, Hilbert fusion basis and obtain some character-
izations of them. we study orthonormal fusion systems and Riesz fusion bases for Hilbert
spaces. we consider the stability of fusion bases under small perturbations. We also general-
ized a result of Paley-Wiener [16] to the situation of fusion basis.

c⃝ 2015 IAUCTB. All rights reserved.

Keywords: Fusion Frame; Riesz fusion basis; Exact fusion frame; Orthonormal fusion
basis.

2010 AMS Subject Classification: Primary 42C15; Secondary 46C99.

1. Introduction

Frames for Hilbert spaces were first formally defined by Duffin and Schaeffer [8] in 1952
to study some deep problems in nonharmonic Fourier series, reintroduced in 1986 by
Daubechies, Grossmann and Meyer [7] and popularized from then on. A frame is a
redundant set of vectors in a Hilbert space with the property that provide usually non-
unique representations of vectors in terms of the frame elements. Fusion frames which
were considered recently as generalized frames in Hilbert spaces, were introduced by
Casazza and Kutyniok in [5] and have quickly turned into an industry. Related approaches
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with a different focus were undertaken by M.Fornasier [9] and W.Sun [15], D. R. Larson
et al. [12]. Bases, frames and fusion frames play important roles in many applications
in mathematics, science, and engineering, including coding theory, filter bank theory,
sigma-delta quantization, signal and image processing and wireless communications and
many other areas. The main subject of this paper deals with fusion bases and resolution
of the identity. The paper is organized as follows: Section 2, contains a new definition of
fusion basis in a Hilbert space. In this section similar to basis theory we first establishes
a simple criterion for determining when a complete set of closed subspaces is a fusion
basis. Next we introduce the concepts of fusion biorthogonal sequence, Bessel fusion basis,
Hilbert fusion basis and obtain some characterizations of them. In Section 3, we study
orthonormal fusion bases and Riesz fusion bases for Hilbert spaces. We introduce a new
definition of Riesz fusion basis and then give some characterizations of orthonormal fusion
bases and Riesz fusion bases. In Section 4, we study the stability of fusion bases under
small perturbations. we also generalized a result of Paley-Wiener [16] to the situation of
fusion basis.

Throughout this paper,H,K are separable Hilbert spaces and I, Ij , J denote the count-
able (or finite) index sets and πW denote the orthogonal projection of a closed subspace
W of H. We will always use RT and NT to denote range and the null spaces of an
operator T ∈ B(H,K) respectively.

Let W = {Wj}j∈J be a sequence of closed subspaces in H, and let {αj}j∈J be a family
of weights, i.e., αj > 0 for all j ∈ J . A sequence Wα = {(Wj , αj)}j∈J is a fusion frame,
if there exist real numbers 0 < C ⩽ D < ∞ such that,

C∥f∥2 ⩽
∑
j∈J

α2
j∥πWj

f∥2 ⩽ D∥f∥2, ∀f ∈ H. (1)

The constant C,D are called the fusion frame bounds. If C = D = λ, the fusion frame is
λ-tight and it is a Parseval fusion frame if C = D = 1, and it is α-uniform if α = αi = αj

for all i, j ∈ J . If the right-hand inequality of (1) holds, then we say that Wα is a Bessel
fusion sequence with Bessel fusion bound D.

For each sequence W = {Wj}j∈J of closed subspaces of H, we define the Hilbert space
associated with W by(∑

j∈J
⊕Wj

)
ℓ2
=

{
{gj}j∈J : gj ∈ Wj and

∑
j∈J

∥gj∥2 < ∞
}
. (2)

with inner product given by ⟨
{fi}i∈J , {gi}i∈J

⟩
=

∑
i∈J

⟨fi, gi⟩. (3)

For more details about the theory and application of bases, frames and fusion frames
we refer the reader to the books by Young [16], Christensen [6], the survey articles by
Asgari et al. [1–4], Casazza [5], Karimizad [13], Gavruta [10], and Holub [11].

2. Fusion Schauder bases

The concept of Riesz decomposition that we call fusion Schauder basis, was first intro-
duced by Casazza and Kutyniok in [5]. In this section, we develop the fusion basis theory
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for Hilbert spaces. As a consequence we generalized some results of bases to fusion bases.

Definition 2.1 Let W = {Wj}j∈J be a sequence of closed subspaces in H, then {Wj}j∈J
is called a fusion Schauder basis or simply a f-basis for H if for any f ∈ H there exists an
unique sequence {gj : gj ∈ Wj}j∈J such that f =

∑
j∈J gj with the convergence being

in norm. If this series converges unconditionally for each f ∈ H, we say that {Wj}j∈J is
an unconditional f-basis.

Example 2.2 For each N ∈ N, let H = CN and let {ei}Ni=1 be the standard basis of CN .
Define Wj ⊂ H by Wj = span{

∑
i=1

i ̸=j

ei}, for all 1 ⩽ j ⩽ N . Then {Wj}Nj=1 is a f-basis

for H.

Proposition 2.3 Let W = {Wj}j∈J be a f-basis for H. Then dimH =
∑

j∈J dimWj .

Proof. Let {eij}i∈Jj
be an orthonormal basis for Wj for all j ∈ J . We show that

{eij}j∈J,i∈Jj
is a basis for H. Since {eij}i∈Jj

is an orthonormal basis for Wj , hence
every gj ∈ Wj has a unique expansion of the form gj =

∑
ij
⟨gj , eij⟩eij . This implies that

also every f ∈ H has a unique expansion of the form f =
∑

j ∈ J
∑

i∈Jj
⟨gj , eij⟩eij . This

shows that dimH =
∑

j∈J dimWj . ■

Corollary 2.4 Let {Wj}j∈J and {Vi}i∈I be f-bases for H. Then
∑

j∈J dimWj =∑
i∈I dimVi.

Proof. This follows immediately from the Proposition 2.3. ■

Let {Wj}j∈J be a f-basis for H, then any f ∈ H has a unique expansion of the form
f =

∑
j∈J gj . Hence, every gj ∈ Wj is a linear operator of f . If we denote this linear

operator by PWj
: H → Wj , then gj = PWj

f and we have f =
∑

j∈J PWj
f . The sequence

{PWj
}j∈J is called the f-dual sequence of {Wj}j∈J and W = {(Wj , PWj

)}j∈J is called
f-basis system.

In the next theorem we show that the operators of a f-dual sequence are continuous
projections.

Theorem 2.5 Let {Wj}j∈J be a f-basis for H, with f-dual sequence {PWj
}j∈J . Then

PWj
∈ B(H,Wj) and PWi

PWj
= δijPWj

for all i, j ∈ J , where δij is the Kronecker delta.

Proof. Define the space

A =
{
{gj}j∈J : gj ∈ Wj and

∑
j∈J

gj is convergent
}
,

with the norm defined by:

∥{gj}j∈J∥ = sup
0<|F |<∞

F⊆J

∥∥∑
i∈F

gi
∥∥ < ∞.

It is clear that A endowed with this norm, is a normed space with respect to the pointwise
operations. We show that the space A is a complete. Let {un}n∈N be a Cauchy sequence
in A. If un = {gnj}j∈J , then given any ε > 0, there exists a number N such that

sup
0<|F |<∞

F⊆J

∥∥∑
i∈F

(gni − gmi)
∥∥ < ε, (4)



134 F. Aboutorabi Goudarzi et al. / J. Linear. Topological. Algebra. 04(02) (2015) 131-142.

for all j ∈ J and m,n ⩾ N . This yields

∥gnj − gmj∥ ⩽ sup
0<|F |<∞

F⊆J

∥∥∑
i∈F

(gni − gmi)
∥∥ < ε

It follows that {gnj}n∈N is a Cauchy sequence in Wj and thus convergent. Let gj ∈ Wj

such that gj = limn→∞ gnj and u = {gj}j∈J . From (4), by letting m → ∞, we obtain

sup
0<|F |<∞

F⊆J

∥∥∑
i∈F

(gni − gi)
∥∥ < ε, (5)

for all n ⩾ N . Moreover, for every finite subset F ⊂ J we have∥∥∑
i∈F

gi
∥∥ ⩽

∥∥∑
i∈F

(gNi − gi)
∥∥+

∥∥∑
i∈F

(gNi

∥∥
⩽ sup

0<|F |<∞
F⊆J

∥∥∑
i∈F

(gNi − gi)
∥∥+ sup

0<|F |<∞
F⊆J

∥∥∑
i∈F

gNi

∥∥,
which implies that u ∈ H. Further (5) implies that the sequence {un}n∈N is convergent
to u in A. This proves that A is a Banach space. Now define the mapping T : A → H
by T ({gj}j∈J) =

∑
j∈J gj . Since {Wj}j∈J is a f-basis for H, T is linear, one-to-one and

onto. On the other hand we have

∥T ({gj}j∈J)
∥∥ =

∥∥∑
j∈J

gj
∥∥ ⩽ sup

0<|F |<∞
F⊆J

∥∥∑
i∈F

gi
∥∥ = ∥{gj}j∈J∥.

Thus T is continuous and by open mapping theorem T−1 is also continuous. This shows
that A and H are Banach spaces isomorphic. Now suppose that f =

∑
j∈J gj and j ∈ J

be arbitrary. Then we obtain

∥PWj
f∥ = sup

0<|F |<∞
F⊆J

∥∥∑
i∈F

gi
∥∥ = ∥T−1f∥ ⩽ ∥T−1∥∥f∥.

This shows PWj
is continuous and ∥PWj

∥ ⩽ ∥T−1∥. Finally from PWi
gj = δijgj we have

PWi
PWj

= δijPWj
for all i, j ∈ J . ■

Definition 2.6 Let {Wj}j∈J be a sequence of closed subspaces in H. Then

(i) {Wj}j∈J is called a complete set for H, if H = span{Wj}j∈J .
(ii) A family of operators {QWj

∈ B(H,Wj) : j ∈ J} is called a f-biorthogonal sequence
of {Wj}j∈J , if QWi

gj = δijgj for all i, j ∈ J and gj ∈ Wj .

A direct calculation shows that {Wj}j∈J is a complete set for H, if and only if

{f : πWj
f = 0, j ∈ J} = {0}.

Moreover, if {QWj
}j∈J is a f-biorthogonal sequence of {Wj}j∈J then any QWj

is a pro-
jection from H onto Wj and QWi

πWj
= πWj

Q∗
Wi

.

Let {(Wj , PWj
)}j∈J be a f-basis system for H. Then P ∗

Wj
is a closed subspaces of H,
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for all j ∈ J . The following theorem shows that the sequence {(P ∗
Wj

(Wj), P
∗
Wj

)}j∈J is
also a f-basis system for H.

Theorem 2.7 Let {(Wj , PWj
)}j∈J be a f-basis system forH. Then {(P ∗

Wj
(Wj), P

∗
Wj

)}j∈J
is also a f-basis system for H.

Proof. We first prove that H = span{P ∗
Wj

(Wj)}j∈J . To see this, let f ⊥
span{P ∗

Wj
(Wj)}j∈J , then we have ∥PWj

f∥2 = ⟨f, P ∗
Wj

PWj
f⟩ = 0, which implies that

PWj
f = 0 for all j ∈ J . We also have f =

∑
j∈J PWj

f = 0. Hence H =

span{P ∗
Wj

(Wj)}j∈J . It is easy to show that any f ∈ H has at least one represen-

tation of the form f =
∑

j∈J P
∗
Wj

gj for some sequence {gj : gj ∈ Wj}j∈J . Now,

we that this representation is unique. Assume that
∑

j∈J P
∗
Wj

gj = 0, then we have

P ∗
Wi

gi = P ∗
Wi

(∑
j∈J P

∗
Wj

gj
)

= 0, which implies that {P ∗
Wj

(Wj)}j∈J is a f-basis for

H. Also, since P ∗
Wi

P ∗
Wj

= δijP
∗
Wj

for all i, j ∈ J , {P ∗
Wj

}j∈J is the f-dual sequence of

{P ∗
Wj

(Wj)}j∈J . ■

Proposition 2.8 Every f-basis for a Hilbert space possesses a unique f-biorthogonal
sequence.

Proof. Let {Wj}j∈J be a f-basis for H with f-dual sequence {PWj
}j∈J . By definition

this sequence is a f-biorthogonal sequence of {Wj}j∈J . Moreover, if {QWj
}j∈J is another

f-biorthogonal sequence of {Wj}j∈J then for any f ∈ H and i ∈ J we have

QWj
f =

∑
j∈J

QWj
PWj

f =
∑
j∈J

δijPWj
f = PWi

f.

Hence QWi
= QWi

. ■

3. Orthonormal fusion bases and Riesz fusion bases

In this section, we develop a theory of orthonormal fusion bases and Riesz fusion bases
for the Hilbert spaces.

Definition 3.1 Let {Wj}j∈J be a sequence of closed subspaces of H. Then

(i) {Wj}j∈J is called an orthonormal fusion system or simply a orthonormal f-system for
H, if {πWj

}j∈J is a f-biorthogonal sequence of {Wj}j∈J , that is

πWi
gj = δijgj , ∀i, j ∈ J, gj ∈ Wj .

(ii) {Wj}j∈J is called an orthonormal f-basis for H, if it is a complete orthonormal f-system
for H.

Example 3.2 Let {ei}i∈N be an orthonormal basis for H. Then

(i) Define the subspace Wj ⊂ H (j ∈ N) by

Wj = span{e2j−1 + e2j} and πWj
f =

1

2
⟨f, e2j−1 + e2j⟩(e2j−1 + e2j).

Then it is easily checked that {Wj}j∈N is an orthonormal f-system for H. But it is not
an orthonormal f-basis for H.
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(ii) Define the subspace Wj ⊂ H (j ∈ N) by

Wj = span{e2j−1, e2j} and πWj
f = ⟨f, e2j−1⟩e2j−1 + ⟨f, e2j⟩e2j .

Then {Wj}j∈N is an orthonormal f-basis for H.

Theorem 3.3 Let {Wj}j∈J be an orthonormal f-system for H, then the series
∑

j∈J gj

converges if and only if {gj}j∈J ∈
(∑

j∈J ⊕Wj

)
ℓ2

and in this case
∥∥∑

j∈J gj
∥∥2 =∑

j∈J ∥gj∥2.

Proof. For every finite subset F ⊂ J we have∥∥∑
j∈F

gj
∥∥2 = ∑

j∈F

∑
i∈F

⟨πWi
gj , gi⟩ =

∑
j∈F

∑
i∈F

⟨δijgj , gi⟩ =
∑
j∈F

∥gj∥2.

From this the result follows. ■

Theorem 3.4 (Bessel’s inequality) Let {Wj}j∈J be an orthonormal f-system for H.
Then ∑

j∈J
∥πWj

f∥2 ⩽ ∥f∥2 for all f ∈ H.

Proof. Let f ∈ H. Fix F ⊂ J with |F | < ∞. Then By Theorem 3.3 we have∥∥f −
∑
j∈F

gj
∥∥2 = ∥f∥2 −

∑
j∈F

⟨πWj
f, gj⟩ −

∑
j∈F

⟨gj , πWj
f⟩+

∑
j∈F

∥gj∥2

= ∥f∥2 −
∑
j∈F

∥πWj
f∥2 +

∑
j∈F

∥πWj
f − gj∥2,

for arbitrary vectors gj ∈ Wj . In particular, if gj = πWj
f , then∥∥f −

∑
j∈F

πWj
f
∥∥2 = ∥f∥2 −

∑
j∈F

∥πWj
f∥2.

From this we have
∑

j∈F ∥πWj
f∥2 ⩽ ∥f∥2, which implies that

∑
j∈J ∥πWj

f∥2 ⩽ ∥f∥2. ■

Corollary 3.5 Let {Wj}j∈J be an orthonormal f-system for H, then for all f ∈ H the

series
∑

j∈J πWj
f converges and

∥∥f −
∑

j∈J πWj
f
∥∥2 ⩽ ∥∥f −

∑
j∈J gj

∥∥2 for all {gj}j∈J ∈(∑
j∈J ⊕Wj

)
ℓ2
.

Theorem 3.6 Let {Wj}j∈J be an orthonormal f-system for H. Then the following con-
ditions are equivalent:

(i) {Wj}j∈J is an orthonormal f-basis for H.
(ii) f =

∑
j∈J πWj

f ∀f ∈ H.

(iii) ∥f∥2 =
∑

j∈J ∥πWj
f∥2 ∀f ∈ H

(iv) If πWj
f = 0 for all j ∈ J , then f = 0.

Proof. The implication (i) ⇒ (ii) follows immediately from Corollary 3.5. The implica-
tions (ii) ⇒ (iii) ⇒ (iv) are obvious. To prove (iv) ⇒ (i) suppose that f ⊥ span{Wj}j∈J ,
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then for every j ∈ J we have ∥πWj
f∥2 = ⟨f, πWj

f⟩ = 0 which implies that f = 0. It
follows that H = span{Wj}j∈J . ■

Theorem 3.7 Let {(Wj , PWj
)}j∈J be a f-basis system for H and let T : H → K be a

bounded invertible operator such that Vj = TWj and QVj
= TPWj

T−1 for all j ∈ J .
Then {(Vj , QVj

)}j∈J is a f-basis system for K.

Proof. Suppose that f ∈ K, then we can write f = Tg for some g ∈ H. By hypothesis
g has an unique expansion to form g =

∑
j∈J gj for some sequence {gj : gj ∈ Wj}j∈J

which implies that f has an unique expansion of the form f =
∑

j∈J fj with fj = Tgj
for all j ∈ J . We also have

QVj
fj = TPWj

T−1fj = T (δijT
−1fj) = δijfj

for arbitrary sequence {fj : fj ∈ Vj}j∈J . From this the result follows. ■

Definition 3.8 Let {Wj}j∈J be a sequence of closed subspaces of H. Then this sequence
is called a Riesz fusion basis or simply Riesz f-basis for H, if there is an orthonormal
f-basis {Vj}j∈J for H and a bounded invertible linear operator T : H → H such that
TVj = Wj (j ∈ J). By Theorem 3.7 if {PWj

}j∈J is f-dual sequence of {Wj}j∈J . Then
PWj

= TπVj
T−1 for all j ∈ J .

Example 3.9 Let {fj}j∈J = {Tej}j∈J be a Riesz basis forH and letWj = span{fj} (j ∈
J). Then {Wj}j∈J is a Riesz f-basis for H. Since the sequence {Vj}j∈J defined by Vj =
span{ej} (j ∈ J) is an orthonormal f-basis and Wj = TVj for all j ∈ J .

Corollary 3.10 If {(Wj , PWj
)}j∈J is a Riesz f-basis system for H. Then

0 < inf
j∈J

∥PWj
∥ ⩽ sup

j∈J
∥PWj

∥ < ∞.

Proof. According to the definition we can write {Wj}j∈J = {TVj}j∈J , where T is a
bounded invertible operator on H and {Vj}j∈J is an orthonormal f-basis for H. For all
j ∈ J we have

∥T−1∥−1∥T∥−1 ⩽ ∥PWj
∥ ⩽ ∥T∥∥T−1∥.

From this the result follows. ■

Proposition 3.11 Let {Wj}j∈J = {TVj}j∈J be a Riesz f-basis for H and let {fj : fj ∈
Vj}j∈J and {gj : gj ∈ Wj}j∈J be two sequences such that gj = Tfj (j ∈ J). Then the
series

∑
j∈J gj converges if and only if

∑
j∈J fj is convergent.

Proof. This follows immediately from the fact that for each finite subset F ⊂ J we have

∥T−1∥−1
∥∥∑
j∈F

fj
∥∥ ⩽

∥∥∑
j∈F

gj
∥∥ ⩽ ∥T∥

∥∥∑
j∈F

fj
∥∥.

■

Definition 3.12 A family of bounded operators {Tj}j∈J on H is a resolution of the
identity on H, if for any f ∈ H we have f =

∑
j∈J Tjf .

The following result shows another way to obtain a resolution of the identity from a
Riesz f-basis.
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Proposition 3.13 Let {Wj}j∈J = {TVj}j∈J be a Riesz f-basis for H. Then

(i) The sequence {Sj}j∈J defined by Sj = T−1πVj
T (j ∈ J) is a resolution of the identity

on H.
(ii) The sequence {Uj}j∈J defined by Uj = T ∗πVj

(T ∗)−1 (j ∈ J) is a resolution of the
identity on H.

(iii) The sequence {Rj}j∈J defined by Rj = (T ∗)−1πVj
T ∗ (j ∈ J) is a resolution of the

identity on H.

Proof. This follows immediately from the definition. ■

To check Riesz f-baseness of a family of closed subspaces, we derive the following useful
characterization.

Theorem 3.14 Let {Wj}j∈J be a sequence of closed subspaces of H. Then the following
statements are equivalent.

(i) {Wj}j∈J is a Riesz f-basis for H.
(ii) There is an equivalent inner product onH, with respect to which the sequence {Wj}j∈J

becomes an orthonormal f-basis for H.
(iii) The sequence {Wj}j∈J is complete for H and there exist positive constants A, B such

that for any finite subset F ⊂ J and arbitrary vectors gj ∈ Wj we have

A
∑
j∈F

∥gj∥2 ⩽
∥∥∑
j∈F

gj
∥∥2 ⩽ B

∑
j∈F

∥gj∥2

Proof. (i) ⇒ (ii) Assume that {Wj}j∈J is a Riesz f-basis and write it in the form
Wj = TVj (j ∈ J). Define a new inner product ⟨., .⟩T on H by ⟨f, g⟩T = ⟨T−1f, T−1g⟩. If
∥.∥T is the norm generated by this inner product, then for all f ∈ H we have ∥T∥−1∥f∥ ⩽
∥f∥T ⩽ ∥T−1∥∥f∥, which implies that the new inner product is equivalent to the original
one. Let {PWj

}j∈J be f-dual sequence of {Wj}j∈J , then we have

⟨PWj
f, g⟩T = ⟨TπVj

T−1f, g⟩T = ⟨πVj
T−1f, T−1g⟩

= ⟨T−1f, πVj
T−1g⟩ = ⟨f, PWj

g⟩T .

It follows that PWj
: H → Wj is an orthogonal projection with respect to ⟨., .⟩T . Hence

{Wj}j∈J is an orthonormal f-basis with respect to inner product ⟨., .⟩T .
(ii) ⇒ (iii) Suppose that ⟨., .⟩1 is an equivalent inner product on H and let {Wj}j∈J

be an orthonormal f-basis with respect to ⟨., .⟩1. Then there exist positive constants m,
M such that

m∥f∥ ⩽ ∥f∥1 ⩽ M∥f∥ ∀f ∈ H.
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Now, for any finite subset F ⊂ J and arbitrary vectors gj ∈ Wj we obtain

m2

M2

∑
j∈F

∥gj∥2 ⩽
1

M2

∑
j∈F

∥gj∥21 =
1

M2

∥∥∑
j∈F

gj
∥∥2
1

⩽
∥∥∑
j∈F

gj
∥∥2 ⩽ 1

m2

∥∥∑
j∈F

gj
∥∥2
1

=
1

m2

∑
j∈F

∥gj∥21 ⩽
M2

m2

∑
j∈F

∥gj∥2.

(iii) ⇒ (i) Let {Vj}j∈J be an orthonormal f-basis for H. Define the mapping T : H → H
by

TπVj
f = πWj

f, ∀f ∈ H, j ∈ J.

For any vectors fj ∈ Vj (j ∈ J) we have

∥∥T (∑
j∈J

fj
)∥∥2 = ∥∥∑

j∈J
πWj

fj
∥∥2 ⩽ B

∑
j∈J

∥πWj
fj∥2 ⩽ B

∥∥∑
j∈J

fj
∥∥2.

It follows that T is a bounded linear operator on H. Similarly, define the mapping
S : H → H by

SπWj
f = πVj

f, ∀f ∈ H, j ∈ J.

We also obtain

∥∥S(∑
j∈J

gj
)∥∥2 = ∥∥∑

j∈J
πVj

gj
∥∥2 ⩽ ∑

j∈J
∥gj∥2 ⩽

1

A

∥∥∑
j∈J

gj
∥∥2,

for all vectors gj ∈ Wj (j ∈ J). Since {Wj}j∈J is complete, S is also a linear bounded
operator on H and TS = ST = IdH. Hence T is invertible and TVj = Wj for all j ∈ J .■

Corollary 3.15 Let {Wj}j∈J be a sequence of closed subspaces of H and let {eij}i∈Ij be
an orthonormal basis for each subspace Wj for all j ∈ J . Then the following conditions
are equivalent.

(i) {Wj}j∈J is a Riesz f-basis for H .
(ii) {eij}j∈J,i∈Ij is a Riesz basis for H.

Proof. (i) ⇒ (ii) Assume that {Wj}j∈J is a Riesz f-basis. By Theorem 3.14 there exist
constants A,B > 0 such that for any finite subset F ⊂ J and arbitrary vectors gj ∈ Wj

we have

A
∑
j∈F

∥gj∥2 ⩽
∥∥∑
j∈F

gj
∥∥2 ⩽ B

∑
j∈F

∥gj∥2.
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Fix Gj ⊂ Ij with |Gj | < ∞ and let {cij}j∈F,i∈Gj
be arbitrary sequence. Then we compute

A
∑
j∈F

∑
i∈Gj

|cij |2 = A
∑
j∈F

∥∥ ∑
i∈Gj

cijeij
∥∥2 ⩽ ∥∥∑

j∈F

∑
i∈Gj

cijeij
∥∥2

⩽ B
∑
j∈F

∥∥ ∑
i∈Gj

cijeij
∥∥2 = B

∑
j∈F

∑
i∈Gj

|cij |2.

Now by Theorem 3.6.6 in [6], {eij}j∈J,i∈Ij is a Riesz basis for H.
(ii) ⇒ (i) Since {eij}j∈J,i∈Ij is a Riesz basis for H, there exist constants A,B > 0 such

that

A
∑
j∈F

∑
i∈Gj

|cij |2 ⩽
∥∥∑
j∈F

∑
i∈Gj

cijeij
∥∥2 ⩽ B

∑
j∈F

∑
i∈Gj

|cij |2,

where Gj ⊂ Ij with |Gj | < ∞ and {cij}j∈F,i∈Gj
is an arbitrary sequence. Now for every

arbitrary vectors gj ∈ Wj we have

A
∑
j∈F

∥gj∥2 = A
∑
j∈F

∑
i∈Ij

|⟨gj , eij⟩|2 ⩽
∥∥∑
j∈F

∑
i∈Ij

⟨gj , eij⟩eij
∥∥2

⩽ B
∑
j∈F

∑
i∈Ij

|⟨gj , eij⟩|2 = B
∑
j∈F

∥gj∥2.

Since
∥∥∑

j∈F gj
∥∥2 = ∥∥∑

j∈F
∑

i∈Ij ⟨gj , eij⟩eij
∥∥2, the result follows at once from Theorem

3.14. ■

The following result have proved by Gavruta in [10].

Theorem 3.16 Let {(Vj , αj)}j∈J be a fusion frame with fusion frame bounds C and D.
Then {(TVj , αj)}j∈J is a fusion frame with fusion frame bounds C∥T∥−2∥T−1∥−2 and
D∥T∥2∥T−1∥2, where T : H → H is an invertible operator.

Corollary 3.17 If {Wj}j∈J is a Riesz f-basis for H, then {(Wj , 1)}j∈J is a 1-uniform
fusion frame with fusion frame bounds ∥T∥−2∥T−1∥−2 and ∥T∥2∥T−1∥2.

A fusion frame {(Wj , αj)}j∈J is called exact, if it ceases to be a fusion frame whenever
anyone of its element is deleted.

Theorem 3.18 Let {Wj}j∈J be a Riesz f-basis for H, then {(Wj , 1)}j∈J is a 1-uniform
exact fusion frame for H. But the opposite implication is not valid.

Proof. Let {eij}i∈Ij be an orthonormal basis for Wj (j ∈ J). By corollary 3.15
{eij}j∈J,i∈Ij is a Riesz basis for H and hence it is an exact frame. Now by Lemma 4.5 in
[5] {(Wj , 1)}j∈J is a 1-uniform exact fusion frame for H. For the opposite implication is
not valid suppose that {ei}i∈Z is an orthonormal basis for H and define the subspaces
W1 and W2 by

W1 = span{ei}i⩾0 and W2 = span{ei}i⩽0.

Then {(W1, 1), (W2, 1)} is a 1-uniform exact fusion frame but is not a Riesz f-basis for
H. ■
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4. The stability of f-bases under perturbations

The stability of bases is important in practice and is therefore studied widely by many
authors, e.g., see [16]. In this section we study the stability of f-bases for a Hilbert space
H. First we generalized a result of Paley-Wiener [16] to the situation of f-basis.

Theorem 4.1 Let {Wj}j∈J be a f-basis for H and suppose that {Vj}j∈J is a family of
closed subspaces of H such that

∥∥∑
j∈F (gj − fj)

∥∥ ⩽ λ
∥∥∑

j∈F gj
∥∥, where 0 ⩽ λ < 1 and

F ⊂ J is any finite subset and gj ∈ Wj , fj ∈ Vj . Then {Vj}j∈J is a f-basis for H.

Proof. The assumption follows that the series
∑

j∈J(gj − fj) converges if the series∑
j∈J gj is convergent for all sequences {gj : gj ∈ Wj}j∈J and {fj : fj ∈ Vj}j∈J .

Define the mapping T : H → H by TπWj
f = πWj

f − πVj
f for all f ∈ H and j ∈ J .

Let {gj : gj ∈ Wj}j∈J be arbitrary sequence and f =
∑

j∈J gj , then we have ∥Tf∥ =∥∥∑
j∈J(gj − πVj

)
∥∥ ⩽ λ∥f∥. It follows that T is a bounded linear operator and ∥T∥ ⩽

λ < 1. Thus the operator IdH−T is invertible and (IdH−T )Wj = Vj for all j ∈ J . Now
the result follows from Theorem 3.7. ■

A family of subspaces {Wj}j∈J is called minimal, if Wi ∩ span j∈J

j ̸=i

{Wj} = {0} for all

i ∈ J .

Proposition 4.2 Let {Wj}j∈J be a sequence of closed subspaces of H. Then

(i) {Wj}j∈J has a f-biorthogonal sequence, if and only if it is minimal.
(ii) The f-biorthogonal sequence of {Wj}j∈J is unique if and only if it is complete.

Proof. For the proof of (i) suppose that {PWj
}j∈J is a f-biorthogonal sequence of

{Wj}j∈J and let f ∈ Wi ∩ span j∈J

j ̸=i

{Wj} for any given i ∈ J . Then f = gi =
∑

j∈J

j ̸=i

gj for

some sequence {gj : gj ∈ Wj}j∈J . We also have

f = gi = PWi
gi =

∑
j∈J

j ̸=i

PWi
gj =

∑
j∈J

j ̸=i

δijgj = 0.

It follows that f = 0, that is {Wj}j∈J is minimal. For the opposite implication in (i),
suppose that {Wj}j∈J is minimal, and let H0 = span{Wj}j∈J . It follows that {Wj}j∈J
is a f-basis for H0. Let {P ′

Wj
}j∈J is a f-dual sequence of {Wj}j∈J for H0. If we define

PWj
= P ′

Wj
πH0

(j ∈ J). Then {PWj
}j∈J is a f-biorthogonal sequence for {Wj}j∈J .

(ii) Let {PWj
}j∈J be a f-biorthogonal sequence of {Wj}j∈J . If {Wj}j∈J is not complete,

then the sequence {QWj
}j∈J defined by QWj

= PWj
+ PWj

(IdH − πH0
) (j ∈ J), is

a f-biorthogonal sequence for {Wj}j∈J . For the other implication in (ii), assume that
{Wj}j∈J is complete. Let {gj : gj ∈ Wj}j∈J be arbitrary sequence and

∑
j∈J gj = 0,

then we have

gi =
∑
j∈J

δijgj =
∑
j∈J

PWi
gj = PWi

(∑
j∈J

gj
)
= 0.

This shows that {Wj}j∈J is a f-basis for H. Now the conclusion follows from Proposition
2.8.

Theorem 4.3 Let {(Wj , PWj
)}j∈J be a f-basis system for H and suppose that {Vj}j∈J

is a family of closed subspaces of H. If {QVj
}j∈J is a f-biorthogonal sequence of {Vj}j∈J
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such that ∥∥∑
j∈F

(PWj
f −QVj

f)
∥∥ ⩽ λ

∥∥∑
j∈F

PWj
f
∥∥ ∀f ∈ H,

for some constant 0 ⩽ λ < 1 and any finite subset F ⊂ J . Then {Vj}j∈J is a f-basis for
H.

Proof. Define the mapping T : H → H, by TPWj
f = PWj

f − QVj
f for all f ∈ H

and j ∈ J . Then as the proof of Theorem 4.1 the operator IdH − T is invertible and
(IdH − T )Wj = Vj (j ∈ J). Now the claim follows from Theorem 3.7. ■
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