مروری بر مشخصههای حفاظتی غیراستاندارد به کار رفته در شبکههای توزیع فعال
محورهای موضوعی :
مهندسی برق قدرت
فرزاد حاجی محمدی
1
,
احسان حیدریان فروشانی
2
*
,
سید فریبرز زارعی
3
,
حسین مختاری
4
1 - شرکت اختر برق اصفهان، اصفهان، ایران
2 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران
3 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران
4 - دانشکده مهندسی برق، دانشگاه صنعتی شریف، تهران، ایران
تاریخ دریافت : 1401/05/13
تاریخ پذیرش : 1401/09/09
تاریخ انتشار : 1402/03/01
کلید واژه:
ریز شبکه,
تکنیک حفاظتی,
شبکه توزیع,
تولید پراکنده,
چکیده مقاله :
در سالهای اخیر، فرآیند توسعه از سیستمهای قدرت الکتریکی معمولی به شبکههای هوشمند منجر به تعریف و پایهگذاری مفهوم ریزشبکهها (MGs) شده است. در واقع، MG یک ساختار آیندهنگر برای اتصال منابع انرژی تجدیدپذیر، سیستمهای ذخیره انرژی و بارها است. MG را میتوان به عنوان یک شبکه توزیع (DN) محلی شامل تولیدات پراکنده (DGs) خطاب کرد. ادغام چنین منابعی مزایای فراوانی از جمله کاهش تلفات توان، بهبود کیفیت توان و قابلیت اطمینان شبکه و کاهش ازدحام شبکه الکتریکی به همراه دارد. از سوی دیگر، پیکربندی جدید شبکه باعث ایجاد چالشهای متعدد حفاظتی میشود که با طرحهای حفاظتی معمول قابل برطرف کردن نیستند. این مسائل عبارتند از: حرکت توان در دو جهت مختلف، تغییر سطح جریان خطا به دلیل حالتهای مختلف عملکرد شبکه، قطع اشتباه و حفاظت ناحیه کور. بنابراین، طرحهای هماهنگی حفاظتی جدید و کارآمدی برای MGها و DN شامل DGها تعمیم یافته است. این مقاله مروری بر تکنیکهای حفاظتی اعمال شده جهت کاهش تأثیر DGها بر DN را ارائه میکند.
چکیده انگلیسی:
In this paper, the different protection challenges of active distribution networks are reviewed and the conventional and non-conventional schemes are examined. In active distribution networks, due to the presence of distributed generations at different levels of distribution network, the functionality of the conventional protection strategies are partially or totally are affected. Therefore, the protection strategies should be updated, and the conventional protective schemes and characteristics should be changed. In this paper, first, the potential protection issues raised of active distribution networks are reviewed. Among the challenges, the bidirectional flow of the fault current, the increased amplitude of fault current, the dependency of the fault current on the operating point, the reduction of reach of the relays, the blinding of the protective relay, unwanted islanding, and etc. are reviewed. Then, the performance of the conventional protections including fuses, overcurrent relays, reclosers under such conditions has been investigated. Furthermore, the existing modified protection methods in the literature are examined, which are classified into two general categories of (i) protective relays with unconventional characteristics, and (ii) adaptive protective relays. Finally, the studied different methods are compared with each other, and their performance characteristics are evaluated.
منابع و مأخذ:
Y. Tan and Z. Wang, “Incorporating unbalanced operation constraints of three-phase distributed generation,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2449–2452, May 2019. doi: 10.1109/TPWRS.2019.2895559.
J. Liu, Y. Zhou, Y. Li, G. Lin, W. Zu, Y. Cao, and et al., “Modelling and analysis of radial distribution network with high penetration of renewable energy considering the time series characteristics,” IET Gener. Transmiss. Distrib., vol. 14, no. 14, pp. 2800–2809, Jul. 2020. doi: 10.1049/iet-gtd.2019.1874.
J. A. Rohten, J. J. Silva, J. A. Muñoz, F. A. Villarroel, D. N. Dewar, M. E. Rivera, and J. R. Espinoza, “A simple self-tuning resonant control approach for power converters connected to micro-grids with distorted voltage conditions,” IEEE Access, vol. 8, pp. 216018–216028, Dec. 2020. doi: 10.1109/ACCESS.2020.3041528.
T. Niknam, M. Zare, and J. Aghaei, “Scenario-Based multiobjective volt/var control in distribution networks including renewable energy sources,” IEEE Trans. on Power Del., vol. 27, no. 4, pp. 2004–2019, Oct. 2012. doi: 10.1109/TPWRD.2012.2209900.
K. Nekooei, M. M. Farsangi, H. N. Pour, and K. Y. Lee, “An improved multi-objective harmony search for optimal placement of DGs in distribution systems,” IEEE Trans. on Smart Grid, vol. 4, no. 4, pp. 557–567, March 2013. doi: 10.1109/TSG.2012.2237420.
T. Niknam, B. B. Firouzi, and A. Ostadi, “A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators,” Applied Energy, vol. 87, no. 6, pp. 1919–1928, Jan. 2010. doi: 10.1016/j.apenergy.2010.01.003.
W. Shang, S. Zheng, L. Li, and M. Redfern, “A new volt/VAR control for distributed generation,” in Proc. IEEE Power Engineering Conference, Sept. 2013, pp. 1–5. doi: 10.1109/PTC.2003.1304390.
J. Tian, H. Gao, M. Hou, J. Liang, and Y. Zhao, “A fast current protection scheme for distribution network with distributed generation,” 10th IET International Conference on Developments in Power System Protection, 2010. doi: 10.1049/cp.2010.0319.
B. J. Brearley, and R.R. Prabu, “A review on issues and approaches for microgrid protection,” Renew Sustain Energy, vol. 67, pp. 988–97, 2017. doi: 10.1016/j.rser.2016.09.047.
X. Zhang and S. Azad, “A review of the protection of microgrids with converter-based resources,” in 2020 CIGRE Canada Conf. Expo, 2020.
M. T. Hagh and N. Ghadimi, “Radial basis neural network-based islanding detection in distributed generation,” Int. J. Eng. Trans. Basics, vol. 27, no. 7, pp. 1061–1070, Jul. 2014, doi: 10.5829/idosi.ije.2014.27.07a.07.
U. Shahzad and S. Asgarpoor, “A Comprehensive Review of Protection Schemes for Distributed Generation,” Energy Power Eng., vol. 09, no. 08, pp. 430–463, 2017, doi: 10.4236/epe.2017.98029.
H. Haddadian, and R. Noroozian, “Optimal operation of active distribution systems based on microgrid structure,” Renew Energy, vol. 104, pp.197–210, 2017. doi: 10.1016/j.renene.2016.12.018.
C. Phurailatpam, B. Rajpurohit, and N. Pindoriya, “Embracing Microgrids: Application for Rural and Urban India,” in 10th National Conference on Indian Energy Sector, 2015.
L. Che, M. Khodayar, and M. Shahidehpour, “Adaptive protection system for microgrids: protection practices of a functional microgrid system,” IEEE Electrification Mag., vol.2, no.1, pp. 66–80, 2014. doi:10.1109/mele.2013.2297031.
IhamäkiJukka, “Integration of microgrids into electricity distribution networks,” Master's Thesis submitted in Lappeenranta University of Technology, 2012.
S. A. Hosseini, H. A. Abyaneh, S. H. H. Sadeghi, F. Razavi, and A. Nasiri, “An overview of microgrid protection methods and the factors involved,” Renew Sustain Energy, vol. 64, pp. 174–86, 2016. doi: 10.1016/j.rser.2016.05.089.
P. Barra, D. Coury, and R. Fernandes, “A survey on adaptive protection of microgrids and distribution systems with distributed generators,” Renewable and Sustainable Energy Reviews, vol. 118, p. 109524, 2020. doi: 10.1016/j.rser.2019.109524.
S. Baloch, and M. S. Muhammad, “An intelligent data mining-based fault detection and classification strategy for microgrid,” IEEE Access, vol. 9, pp. 22470–22479, Feb. 2021. doi: 10.1109/ACCESS.2021.3056534.
T. N. Boutsika and S. A. Papathanassiou, “Short-circuit calculations in networks with distributed generation,” Electr. Power Syst. Res., vol. 78, no. 7, pp. 1181–1191, Jul. 2008, doi: 10.1016/j.epsr.2007.10.003.
I. Tristiu, C. Bulac, S. Costinas, L. Toma, A. Mandis, and T. Zabava, “A new and efficient algorithm for short-circuit calculation in distribution networks with distributed generation,” in Proc. 9th Int. Symp. Adv. Topics Electr. Eng. (ATEE), May 2015, pp. 816–821.
S. T. Ustun, “Design and development of a communication assisted microgrid protection system,” Ph.D. thesis submitted in School of Engineering and Science, Faculty of Health, Engineering and Science, Victoria University, 2013.
J. Keller, and B. Kroposki, “Understanding fault characteristics of inverter-based distributed energy resources,” Nat. Renew. Energy Lab., Golden, CO, USA, Tech. Rep. NREL/TP-550-46698, 2010.
T. S. Ustun, C. Ozansoy, and A. Ustun, “Fault current coefficient and time delay assignment for microgrid protection system with central protection unit,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 598–606, May 2013, doi: 10.1109/TPWRS.2012.2214489.
H. Margossian, J. Sachau, and G. Deconinck, “Short circuit calculation in networks with a high share of inverter based distributed generation,” in Proc. IEEE 5th Int. Symp. Power Electron. Distrib. Gener. Syst. (PEDG), Jun. 2014, pp. 1–5. doi: 10.1109/PEDG.2014.6878629.
V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” CSEE J. Power Energy Syst., vol. 3, no. 4, pp. 365–379, Dec. 2017, doi: 10.17775/CSEEJPES.2017.00030.
P. Barker, and R. D. Mello, “Determining the impact of distributed generation on power systems. i. radial distribution systems,” In: 2000 power engineering society summer meeting. IEEE; 2000. doi:10.1109/pess.2000.868775.
W. K. A. Najy, H. H. Zeineldin, and W. L. Woon, “Optimal protection coordination for microgrids with grid-connected and islanded capability,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1668–1677, Apr. 2013, doi:10.1109/TIE.2012.2192893.
A. A. Memon, and K. Kauhaniemi, “A critical review of AC microgrid protection issues and available solutions,’’ Electr. Power Syst. Res., vol. 129, pp. 23–31, Dec. 2015, doi: 10.1016/j.epsr.2015.07.006.
Z. Liu, C. Su, H.K. Hoidalen, Z. Chen, “A multiagent system-based protection and control scheme for distribution system with distributed-generation integration,” IEEE Trans Power Deliv., vol.32, no.1, pp. 536–45, 2017. doi:10.1109/ tpwrd.2016.2585579.
M. Usama, M. Moghavvemi, H. Mokhlis, N. N. Mansor, H. Farooq, and A. Pourdaryaei, “Optimal protection coordination scheme for radial distribution network considering ON/OFF-grid,” IEEE Access, vol. 4, Jan. 2021, doi: 10.1109/ACCESS.2020.3048940.
B. Hussain, S. M. Sharkh, S. Hussain, and M. A. Abusara, “Integration of distributed generation into the grid: Protection challenges and solutions,” in Proc. 10th IET Int. Conf. Develop. Power Syst. Protection (DPSP) Manag. Change, 2010, pp. 1–5, doi: 10.1049/cp.2010.0347.
B. P. Bhattarai, B. Bak-Jensen, S. Chaudhary, J.R. Pillai, “An adaptive overcurrent protection in smart distribution grid,” In: 2015 IEEE eindhoven Power Tech. IEEE; 2015. doi: 10.1109/ptc.2015.7232310.
V. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, and N. D. Hatziargyriou, “Hardware-in-the-loop design and optimal setting of adaptive protection schemes for distribution systems with distributed generation,” IEEE Trans. Power Del., vol. 32, no. 1, pp. 393–400, Feb. 2017, doi: 10.1109/TPWRD.2015.2509784.
D. Lagos, V. Papaspiliotopoulos, G. Korres, and N. Hatziargyriou, “Microgrid protection against internal faults: Challenges in islanded and interconnected operation,” IEEE Power and Energy Magazine, vol. 19, no. 3, pp. 20–35, 2021. doi: 10.1109/MPE.2021.3057950.
A. Srivastava, R. Mohanty, M. A. F. Ghazvini, D. Steen, O. Carlson, and et al., “A review on challenges and solutions in microgrid protection,” in 2021 IEEE Madrid Power Tech, pp. 1–6, IEEE, 2021. doi: 10.1109/PowerTech46648.2021.9495090.
N. W. A. Lidula and A. D. Rajapakse, “A pattern recognition approach for detecting power islands using transient signals—Part I: Design and implementation,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 3070–3077, Oct. 2010, doi: 10.1109/TPWRD.2010.2053724.
N. W. A. Lidula and A. D. Rajapakse, “A pattern-recognition approach for detecting power islands using transient signals—Part II: Performance evaluation,” IEEE Trans. Power Del., vol. 27, no. 3, pp. 1071–1080, Jul. 2012, doi: 10.1109/TPWRD.2012.2187344.
M. L. Ong’ondo, N. G. Nyauma, and M. J. Saulo, “Modeling and simulation of solar photovoltaic renewable energy sources power generation system for mgs and loss of mains detection,” Multidisciplinary Journal of Technical University of Mombasa, vol. 1, no. 1, pp. 37–44, 2020. doi: ir.tum.ac.ke/handle/123456789/17457.
M. D. Laverty, and R. J. Best, D. J. Morrow, “Loss of mains protection system by application of phasor measurement unit technology with experimentally assessed threshold settings,” IET Gener Transm Distrib., vol.9, no.2, pp. 146–53, jan. 2015. doi: 10.1049/iet-gtd.2014.0106.
D. M. Laverty, R. J. Best, and D. J. Morrow, “Loss-of-mains protection system by application of phasor measurement unit technology with experimentally assessed threshold settings,” IET Gener., Transmiss. Distrib., vol. 9, no. 2, pp. 146–153, Jan. 2015. doi: 10.1049/iet-gtd.2014.0106.
P. A. Kumar and J. S. Y. Nagaraju, “Protection issues in micro grid,” 2013.
A. Hartono, “Microgrid safety and protection strategies,” 2018.
K. Kauhaniemi, “Impact of distributed generation on the protection of distribution networks. In: Eighth IEE international conference on developments in power system protection,” 2004. doi: 10.1049/cp:20040126.
L. Kumpulainen, and K. Kauhaniemi, “Distributed generation and reclosing coordination,” In: Nordic distribution and asset management conference, 2004.
I. Xyngi, and M. Popov, “An intelligent algorithm for the protection of smart power systems,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1541–1548, Sep. 2013. doi: 10.1109/TSG.2013.2244621.
IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, Standard 1547-2003, 2003.
Z. Wang, B. Chen, J. Wang, J. Kim, and M. M. Begovic, “Robust optimization based optimal DG placement in microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2173–2182, Sep. 2014. doi: 10.1109/TSG.2014.2321748.
K. D. Khatod, V. Pant, and J. Sharma, “Evolutionary programming based optimal placement of renewable distributed generators,” IEEE Trans. Power Syst. Vol. 28, no. 2, May 2013. doi: 10.1109/TPWRS.2012.2211044.
H. Zhan, C. Wang, Y. Wang, X. Yang, X. Zhang, C. Wu, and Y. Chen, “Relay protection coordination integrated optimal placement and sizing of distributed generation sources in distribution networks,” IEEE Trans. Smart Grid, vol.7, pp. 55–65, 2016. doi: 10.1109/TSG.2015.2420667.
H. A. Abdel-Ghany, A.M. Azmy, N.I. Elkalashy, and E.M. Rashad, “Optimizing DG penetration in distribution networks concerning protection schemes and technical impact,” Electr Power Syst Res.; vol. 128, pp. 113-122, 2015. doi: 10.1016/j.epsr.2015.07.005.
M. Ahmadigorji, M. T. Kenari, and M. Mehrasa, “Optimal DG sizing in primary distribution feeders using dynamic programming approach,” 2012 11th International Conference on Environment and Electrical Engineering,” doi: 10.1109/EEEIC.2012.6221405.
D. Yoosefian, and R. Mohammadi Chabanloo, “Protection of distribution network considering fault ride through requirements of wind parks,” Electric Power Systems Research, Vol. 178, January 2020. doi: 10.1016/j.epsr.2019.106019.
M. Mohseni, and S. M. Islam, “Review of international grid codes for wind power integration: Diversity, technology and a case for global standard,” Renewable and Sustainable Energy Reviews, vol.16, 2012. doi: 10.1016/j.rser.2012.03.039.
Energinet, “Technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW,” Sep. 2010. Available at: http://www.energinet.dk.
I.Erlich, W. Winter, A. Dittrich, “Advanced grid requirements for the integration of wind turbines into the German transmission system,” In: Proceedings of IEEE power engineering society general meeting. 2006. doi: 10.1109/PES.2006.1709340.
N. Rajaei, and M. M. A. Salama, “Management of Fault Current Contribution of Synchronous DGs Using Inverter-Based DGs,” IEEE Trans. Smart Grid, vol.6, no.6, pp. 3073-3081, 2015. doi: 10.1109/TSG.2015.2432759.
E. Ebrahimi, M. J. Sanjari, G. B. Gharehpetian, “Control of three-phase inverter-based DG system during fault condition without changing protection coordination,” International Journal of Electrical Power & Energy Systems, vol. 63, pp. 814–823, Dec. 2014. doi: 10.1016/j.ijepes.2014.05.058.
H. Yazdanpanahi, Y. Wei Li, and W. Xu, “A New Control Strategy to Mitigate the Impact of Inverter-Based DGs on Protection System,” IEEE Trans. Smart Grid, vol.3, no.3, pp. 1427–1436, 2012. doi: 10.1109/TSG.2012.2184309.
A. Heidary, H. Radmanesh, K. Rouzbehi, A. Mehrizi-Sani, and G. B. Gharehpetiane, “Inductive fault current limiters: A review,” Electric Power Systems Research, vol. 187, 2020. doi: 10.1016/j.epsr.2020.106499.
A. E. Dahej, S. Esmaeili, H. Hojabri, “Co-Optimization of Protection Coordination and Power Quality in Microgrids Using Unidirectional Fault Current Limiters,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 5080–5091, Sep. 2018. doi: 10.1109/TSG.2017.2679281.
H. Eid, H.M. Sharaf, M. Elshahed, “Optimal Coordination of Directional Overcurrent Relays in Interconnected Networks utilizing User-Defined Characteristics and Fault Current Limiter,” 2021 IEEE PES/IAS PowerAfrica, 2021. doi: 10.1109/PowerAfrica52236.2021.9543303.
M. Ebrahimpour, B. Vahidi, and S.H. Hosseinian, “A hybrid superconducting fault current controller for DG networks and microgrids,” IEEE Trans Appl Supercond., vol. 23, no.5, 2013. doi: 10.1109/TASC.2013.2267776.
I. K. Okakwu, P. E. Orukpe, and E. A. Ogujor, “Application of superconducting fault current limiter (SFCL) in power systems: A review,” Eur. J. Eng. Res. Sci., vol. 3, no. 7, pp. 28–32, Jul. 2018, doi: 10.24018/ejers.2018.3.7.799.
A. Abramovitz, and K. M. Smedley, “Survey of solid-state fault current limiters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2770–2782, 2012. doi: 10.1109/TPEL.2011.2174804.
M. Eladawy, and I.A. Metwally, “Compact designs of permanent-magnet biased fault current limiters,” IET Electr. Power Appl., vol. 14, no. 3, pp. 471–479, 2020. doi: 10.1049/iet-epa.2019.0498.
M. E. Hamidi and R. M. Chabanloo, “Optimal Allocation of Distributed Generation with Optimal Sizing of Fault Current Limiter to Reduce the Impact on Distribution Networks Using NSGA-II,” IEEE Systems Journal, vol.13, no.2, pp. 1714–1724, 2019. doi: 10.1109/JSYST.2018.2867910.
A. Abo El-Ela, R. A. El-Sehiemy, A. M. Shaheen, and A. R. Ellien, “Optimal Allocation of Distributed Generation Units Correlated with Fault Current Limiter Sites in Distribution Systems,” IEEE Systems Journal, vol.15, no.2, pp. 2148–2155, 2021. doi: 10.1109/JSYST.2020.3009028.
A. A. Kalage, N. D. Ghawghawe, and T. V. Deokar, “Optimum location of superconducting fault current limiter to mitigate DG impact,” 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), pp. 704–707, 2016. doi: 10.1109/AEEICB.2016.7538385.
Y. Zhao, O. Krause and T.K. Saha, “A new approach for optimal allocation of multiple SFCLs in a power system with distributed generation,” Proceedings of the 2015 IEEE power and energy engineering conference (APPEEC), 2015, pp. 15–18, Nov 2015. doi: 10.1109/APPEEC.2015.7380876.
H. Hua, T. Liu, X. Liu, C. He, L. Wu, L. Nan, X. Su, “Optimal Allocation and Sizing of Fault Current Limiters Considering Transmission Switching with an Explicit Short Circuit Current,” IEEE Transactions on Power Systems, pp.1–1, May 2020. doi: 10.1109/TPWRS.2022.3174870.
A. Mahmoudian, M. R. Islam, A. Z. Kouzani, and M. A. P. Mahmud, “Optimal Allocation of Fault Current Limiter in Distribution Network with NSGA-II Algorithm,” IEEE Transactions on Power Systems, 2020. doi: 10.1109/ASEMD49065.2020.9276231.
A. G. Phadke, and J.S. Thorp, “Computer Relaying for Power Systems,” John Wiley & Sons, 2009. doi: 10.1002/9780470749722.
P. M. Anderson, “Power System Protection,” Wiley, 1998.
S. H. Horowitz, and A.G. Phadke, “Power System Relaying,” vol. 22, John Wiley & Sons, 2008.
V. C. Nikolaidis, E. Papanikolaou, and A.S. Safigianni, “A communication-assisted overcurrent protection scheme for radial distribution systems with distributed generation,” IEEE Trans. Smart Grid, vol.7 no.1, pp. 114–123, 2016. doi:10.1109/TSG.2015.2411216.
A. G. Phadke, W. Peter, D. Lei, and V. Terzija, “Improving the performance of power system protection using wide area monitoring systems,” J. Mod. Power Syst. Clean Energy, vol.4, no.3, pp. 319–331, 2016.
H. M. Zeineldin, H.H. Sharaf, and E. El-Saadany, “Protection coordination for microgrids with grid-connected and islanded capabilities using dual setting directional overcurrent relays,” IEEE Trans. Smart Grid, vol.9, no.1, pp. 431–151, 2016, doi: 10.1109/TSG.2016.2546961.
M. Y. Shih, C.A.C. Salazar, A.C. Enríquez, “Adaptive directional overcurrent relay coordination using ant colony optimization,” IET Gener. Transm. Distrib., vol.9, no.14, pp. 2040–2049, 2015. doi: 10.1049/iet-gtd.2015.0394.
V. N. Rajput, and K.S. Pandya, “Coordination of directional overcurrent relays in the interconnected power systems using effective tuning of harmony search algorithm,” Sustain. Comput. Inf. Syst., vol.15, pp. 1–15, 2017. doi: 10.1016/j.suscom.2017.05.002.
K. A. Saleh, H.H. Zeineldin, and E.F. El-Saadany, “Optimal protection coordination for microgrids considering n − 1 contingency,” IEEE Trans. Ind. Inf., vol.13, no.5, pp. 2270–2278, 2017. doi: 10.1109/TII.2017.2682101.
S. Gokhale, and V. Kale, “An application of a tent map initiated chaotic firefly algorithm for optimal overcurrent relay coordination,” Int. J. Electr. Power Energy Syst., vol.78, pp. 336–342, 2016. doi: 10.1016/j.ijepes.2015.11.087.
D. K. Ibrahim, E.E.D.A. El Zahab, and S.A.E.A. Mostafa, “New coordination approach to minimize the number of re-adjusted relays when adding DGs in interconnected power systems with a minimum value of fault current limiter,” Int. J. Electr. Power Energy Syst., vol. 85, pp.32–41, 2017. doi: 10.1016/j.ijepes.2016.08.003.
IEC, Electrical relays-part 3: Single input energizing quantity measuring relays with dependent or independent time, 60255-3, 1989.
IEEE, Standard inverse-time characteristic equations for overcurrent relays, std c37.112-1996, 1996.
K. A. Saleh, H. Zeineldin, A. Al-Hinai, and E.F. El-Saadany, “Optimal coordination of directional overcurrent relays using a new time-current-voltage characteristic,” IEEE Trans. Power Delivery, vol. 30, no. 2, pp. 537–544, 2015. doi: 10.1109/TPWRD.2014.2341666.
M. Dewadasa, A. Ghosh, G. Ledwich, and M. Wishart, “Fault isolation in distributed generation connected distribution networks,” IET Gener. Transm. Distrib., vol. 5, no.10, pp.1053–1061, 2011. doi: 10.1049/iet-gtd.2010.0735.
K. A. Saleh, M.S. El Moursi, and H.H. Zeineldin, “A new protection scheme considering fault ride through requirements for transmission level interconnected wind parks,” IEEE Trans. Ind. Inf., vol. 11, no. 6 pp.1324–1333, 2015. doi: 10.1109/TII.2015.2479583.
N. Bayati, A. Dadkhah, S. Sadeghi, B. Vahidi, and A.E. Milani, “Considering variations of network topology in optimal relay coordination using time-current-voltage characteristic, 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe),” 2017, pp.1–5. doi: 10.1109/EEEIC.2017.7977810.
O. A. Soria, A.C. Enríquez, and L.T. Guajardo, “Overcurrent relay with unconventional curves and its application in industrial power systems,” Electr. Power Syst. Res., vol. 110, pp. 113–121, 2014. doi: 10.1016/j.epsr.2013.12.012.
A. C. Enriquez, E. Vazquez-Martinez, and H.J. Altuve-Ferrer, “Time overcurrent adaptive relay,” Int. J. Electr. Power Energy Syst., vol. 25, no. 10, pp. 841–847, 2003. doi: 10.1016/S0142-0615(03)00059-0.
A. Conde, and E. Vázquez, “Functional structure for performance improvement of time overcurrent relays,” Electr. Power Compon. Syst., vol. 35, no. 3, pp. 261–278, 2007. doi: 10.1080/15325000600978635.
S. Zocholl, J. Akamine, A. Hughes, M. Sachdev, L. Scharf, and H. Smith, “Computer representation of overcurrent relay characteristics,” IEEE Trans. Power Delivery, no. 4, vol. 3, pp. 1659–1667, 1989. doi: 10.1109/61.32656.
S. Jamali, and H. Borhani-Bahabadi, “Recloser time-current-voltage characteristic for fuse saving in distribution networks with DG,” IET Gener. Transm. Distrib., vol. 11, no. 1, pp. 272–279, 2017. doi: 10.1049/iet-gtd.2016.0979.
S. Jamali, and H. Borhani-Bahabadi, “Non-communication protection method for meshed and radial distribution networks with synchronous-based DG,” Int. J. Electr. Power Energy Syst., vol. 93, pp. 468–478, 2017. doi: 10.1016/j.ijepes.2017.06.019.
S. Jamali, and H. Borhani-Bahabadi, “Self-adaptive relaying scheme of reclosers for fuse saving in distribution networks with DG,” Int. J. Power Energy Res., vol. 1, no. 1, 2017. doi: 10.22606/ijper.2017.11002.
A. Agrawal, M. Singh, and M. Tejeswini, “Voltage current based time inverse relay coordination for PV feed distribution systems,” 2016 National Power Systems Conference (NPSC), IEEE (2016), pp. 1–6. doi: 10.1109/NPSC.2016.7858866.
M. V. Tejeswini, and B.C. Sujatha, “Optimal protection coordination of voltage-current time-based inverse relay for PV based distribution system,” 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), 2107. pp. 1–7, htdoi:10.1109/ICECCT.2017. 8118006.
H. C. Kılıçkıran, H. Akdemir, İ. Şengör, B. Kekezoğlu, and N.G. Paterakis, “A non-standard characteristic based protection scheme for distribution networks,” Energies, vol. 11, no. 5, pp. 1241, 2018. doi: 10.3390/en11051241.
M. Dewadasa, A. Ghosh, G. Ledwich, “An inverse time admittance relay for fault detection in distribution networks containing DGs,” TENCON 2009 – 2009 IEEE Region 10 Conference, 2009, pp. 1–6. doi: 10.1109/TENCON.2009.5396204.
R. Majumder, M. Dewadasa, A. Ghosh, G. Ledwich, and F. Zare, “Control and protection of a microgrid connected to utility through back-to-back converters,” Electr. Power Syst. Res., vol. 81, no.7, pp. 1424–1435, 2011. doi: 10.1016/j.epsr.2011.02.006.
M. Dewadasa, R. Majumder, A. Ghosh, and G. Ledwich, “Control and protection of a microgrid with converter interfaced micro sources,” ICPS’09. International Conference on Power Systems, 2009, pp. 1–6. doi: 10.1109/ICPWS.2009.5442654.
M. Dewadasa, A. Ghosh, and G. Ledwich, “Fold back current control and admittance protection scheme for a distribution network containing distributed generators,” IET Gener. Transm. Distrib., vol. 4, no. 8, pp. 952–962, 2010. doi: 10.1016/j.epsr.2011.02.006.
T. Keil, and J. Jager, “Advanced coordination method for overcurrent protection relays using nonstandard tripping characteristics,” IEEE Trans. Power Delivery, vol. 23, no.1, pp. 52–57, 2008. doi: 10.1109/TPWRD.2007.905337.
M. Khederzadeh, “Adaptive setting of protective relays in microgrids in grid-connected and autonomous operation,” 11th IET International Conference on Developments in Power Systems Protection (DPSP), 2012. doi: 10.1049/cp.2012.0076.
E. Y. Erokhin, “New overcurrent RST80 relays and their time-current characteristics,” Russian Electrical Engineering, vol. 82, no. 3, pp. 156–159, 2011.
A. Yazdani nejadi, M.S. Naderi, M. S. Naderi, G. B. Gharehpetian, and V. Talavat, “Protection coordination of directional overcurrent relays: New time current characteristic and objective function,” IET Gener. Transm. Distrib., vol. 12, no. 1, pp. 190–199, 2018. doi: 10.1049/iet-gtd.2017.0574.
J. Tan, P. McLaren, R. Jayasinghe, and P. Wilson, “Software model for inverse time overcurrent relays incorporating IEC and IEEE standard curves,” Canadian Conference on Electrical and Computer Engineering. IEEE CCECE 2002, vol. 1, 2002, pp. 37–41, doi: 10.1109/CCECE.2002.1015171.
H. J. Laaksonen, “Protection principles for future microgrids,” IEEE transactions on power electronics, vol. 25, no.12, pp. 2910–2918, 2010. doi: 10.1109/TPEL.2010.2066990.
T. S. Ustun, C. Ozansoy, and A. Zayegh, “Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420,” IEEE Trans Power Syst., vol. 27, no. 3, pp.1560–1567, 2012. doi: 10.1109/TPWRS.2012.2185072.
T. S. Ustun, C. Ozansoy, and A. Zayegh, “Differential protection of microgrids with central protection unit support,” In: IEEE Tencon spring conference, 2013. doi: 10.1109/TENCONSpring.2013.6584408.
M. A. Zamani, A. Yazdani, and T.S. Sidhu, “A communication-assisted protection strategy for inverter-based medium-voltage microgrids,” IEEE Trans Smart Grid, vol. 3, pp. 2088–2099, 2012. doi: 10.1109/TENCONSpring.2013.6584408.
S. M. Brahma, and A.A. Girgis, “Development of adaptive protection scheme for distribution systems with high penetration of distributed generation,” IEEE Trans Power Deliv., vol. 19, no.1, pp. 53-63, 2004. doi:10.1109/TPWRD.2003.820204.
A. Oudalov, and A. Fidigatti, “Adaptive network protection in microgrids,” Int J Distrib Energy Resour., vol. 4, no. 3, pp. 201–225, 2009.
A. H. Etemadi, and R. Iravani, “Overcurrent and overload protection of directly voltage controlled distributed resources in a microgrid,” IEEE Trans Ind Electron, vol. 60, no. 12, pp. 5629 – 5638, 2013. doi: 10.1109/TIE.2012.2229680.
H. Laaksonen, D. Ishchenko, and A. Oudalov, “Adaptive protection and microgrid control design for Hailuoto Island,” IEEE Trans Smart Grid, vol. 5, no.3, pp. 1486–1493. 2014. doi: 10.1109/TSG.2013.2287672.
M. P. Nthontho, S.P. Chowdhury, S. Winberg, S. Chowdhury, “Protection of domestic solar photovoltaic based microgrid,” In: 11th international conference on developments in power system protection, 2012. pp. 1–6. doi: 10.1049/cp.2012.0137.
E. Sortomme, J. Ren, and S. S. Venkata, “A differential zone protection scheme for microgrids,” In: IEEE Power & Energy Society General Meeting, 2013. doi: 10.1109/PESMG.2013.6672113.
A. R. Haron, A. Mohamed, and H. Shareef, “Coordination of over current, directional and differential relay for the protection of microgrid system,” Procedia Technol., vol.11, pp.366–373, 2013. doi: 10.1016/j.protcy.2013.12.204.
M. A. Zamani, T.S. Sidhu, and A. Yazdani, “A protection strategy and microprocessor-based relay for low-voltage microgrids,” IEEE Trans Power Deliv., vol.26, no. 3, pp. 1873–1883, 2011. doi: 10.1109/TPWRD.2011.2120628.
M. A. Zamani, T.S. Sidhu, and A. Yazdani, “Investigations into the control and protection of an existing distribution network to operate as a microgrid: a case study,” IEEE Trans Ind Electron, vol. 61, no. 4, pp. 1904–1915, 2014. doi: 10.1109/TIE.2013.2267695.
H. C. Kiliçkiran, İ. Şengör, H. Akdemir, B. Kekezoğlu, O. Erdinç, and N. G. Paterakis, “Power system protection with digital overcurrent relays: A review of nonstandard characteristics,” Electric Power Systems Research, vol.164, pp. 89–102, 2018. doi: 10.1016/j.epsr.2018.07.008.
M. Usama, H. Mokhlis, M. Moghavvemi, N. N. Mansor, M. A. Alotaibi, M. A. Muhammad and A. A. Bajwa, “A Comprehensive Review on Protection Strategies to Mitigate the Impact of Renewable Energy Sources on Interconnected Distribution Networks,” IEEE Access, vol. 9, pp. 35740–35765, 2021. doi: 10.1109/ACCESS.2021.3061919.
_||_